版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ILOWorkingPaper96
August/2023
X
GenerativeAIandJobs:Aglobal
analysisofpotentialeffectsonjob
quantityandquality
Authors/Pawe?Gmyrek,JanineBerg,DavidBescond
Copyright?InternationalLabourOrganization2023
ThisisanopenaccessworkdistributedundertheCreativeCommonsAttribution4.0InternationalLicense(
/licenses/by/4.0/
).Userscanreuse,share,adaptandbuildupontheoriginalwork,asdetailedintheLicense.TheILOmustbeclearlycreditedastheown-eroftheoriginalwork.TheuseoftheemblemoftheILOisnotpermittedinconnectionwithusers’work.
Attribution–Theworkmustbecitedasfollows:Gmyrek,P.,Berg,J.,Bescond,D.GenerativeAIandJobs:Aglobalanalysisofpotentialeffectsonjobquantityandquality.ILOWorkingPaper96.
Geneva:InternationalLabourOffice,2023.
Translations–Incaseofatranslationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThistranslationwasnotcreatedbytheInternationalLabourOrganization(ILO)andshouldnotbeconsideredanofficialILOtranslation.TheILOisnotresponsibleforthecontentoraccuracyofthistranslation.
Adaptations–Incaseofanadaptationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThisisanadaptationofanoriginalworkbytheInternationalLabourOrganization(ILO).ResponsibilityfortheviewsandopinionsexpressedintheadaptationrestssolelywiththeauthororauthorsoftheadaptationandarenotendorsedbytheILO.
ThisCClicensedoesnotapplytonon-ILOcopyrightmaterialsincludedinthispublication.Ifthematerialisattributedtoathirdparty,theuserofsuchmaterialissolelyresponsibleforclearingtherightswiththerightholder.
Anydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitra-tioninaccordancewiththeArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL).Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.
AllqueriesonrightsandlicensingshouldbeaddressedtotheILOPublishingUnit(RightsandLicensing),1211Geneva22,Switzerland,orbyemailto
rights@
.
ISBN9789220395356(print),ISBN9789220395363(webPDF),ISBN9789220395370(epub),ISBN9789220395387(mobi),ISBN9789220395394(html).ISSN2708-3438(print),ISSN2708-3446(digital)
/10.54394/FHEM8239
ThedesignationsemployedinILOpublications,whichareinconformitywithUnitedNationspractice,andthepresentationofmaterialthereindonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheILOconcerningthelegalstatusofanycountry,areaorterritoryorofitsauthorities,orconcerningthedelimitationofitsfrontiers.
Theresponsibilityforopinionsexpressedinsignedarticles,studiesandothercontributionsrestssolelywiththeirauthors,andpublicationdoesnotconstituteanendorsementbytheILOoftheopinionsexpressedinthem.
Referencetonamesoffirmsandcommercialproductsandprocessesdoesnotimplytheiren-dorsementbytheILO,andanyfailuretomentionaparticularfirm,commercialproductorpro-cessisnotasignofdisapproval.
InformationonILOpublicationsanddigitalproductscanbefoundat:
/publns
ILOWorkingPaperssummarizetheresultsofILOresearchinprogress,andseektostimulatediscussionofarangeofissuesrelatedtotheworldofwork.CommentsonthisILOWorkingPaperarewelcomeandcanbesentto
RESEARCH@
,
berg@
.
Authorizationforpublication:RichardSamans,DirectorRESEARCH
ILOWorkingPaperscanbefoundat:
/global/publications/working-papers
Suggestedcitation:
Gmyrek,P.,Berg,J.,Bescond,D.2023.GenerativeAIandJobs:Aglobalanalysisofpotentialef-fectsonjobquantityandquality,ILOWorkingPaper96(Geneva,ILO).
/10.54394/
FHEM8239
01ILOWorkingPaper96
Abstract
ThisstudypresentsaglobalanalysisofthepotentialexposureofoccupationsandtaskstoGenerativeAI,andspecificallytoGenerativePre-TrainedTransformers(GPTs),andthepossibleimplicationsofsuchexposureforjobquantityandquality.ItusestheGPT-4modeltoestimatetask-levelscoresofpotentialexposureandthenestimatespotentialemploymenteffectsatthegloballevelaswellasbycountryincomegroup.Despiterepresentinganupper-boundestimateofexposure,wefindthatonlythebroadoccupationofclericalworkishighlyexposedtothetech-nologywith24percentofclericaltasksconsideredhighlyexposedandanadditional58percentwithmedium-levelexposure.Fortheotheroccupationalgroups,thegreatestshareofhighlyex-posedtasksoscillatesbetween1and4percent,andmediumexposedtasksdonotexceed25percent.Asaresult,themostimportantimpactofthetechnologyislikelytobeofaugmentingwork–automatingsometaskswithinanoccupationwhileleavingtimeforotherduties–asop-posedtofullyautomatingoccupations.
Thepotentialemploymenteffects,whetheraugmentingorautomating,varywidelyacrosscoun-tryincomegroups,duetodifferentoccupationalstructures.Inlow-incomecountries,only0.4percentoftotalemploymentispotentiallyexposedtoautomationeffects,whereasinhigh-incomecountriesthesharerisesto5.5percent.Theeffectsarehighlygendered,withmorethandoubletheshareofwomenpotentiallyaffectedbyautomation.Thegreaterimpactisfromaugmenta-tion,whichhasthepotentialtoaffect10.4percentofemploymentinlow-incomecountriesand13.4percentofemploymentinhigh-incomecountries.However,sucheffectsdonotconsiderinfrastructureconstraints,whichwillimpedethepossibilityforuseinlower-incomecountriesandlikelyincreasetheproductivitygap.
Westressthattheprimaryvalueofthisanalysisisnotthepreciseestimates,butratherthein-sightsthattheoveralldistributionofsuchscoresprovidesaboutthenatureofpossiblechanges.Suchinsightscanencouragegovernmentsandsocialpartnerstoproactivelydesignpoliciesthatsupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Moreover,thelikelyramificationsonjobqualitymightbeofgreaterconsequencethanthequantitativeimpacts,bothwithrespecttothenewjobscreatedbecauseofthetechnology,butalsothepotentialeffectsonworkintensityandautonomywhenthetechnologyisintegrat-edintotheworkplace.Forthisreason,wealsoemphasizetheneedforsocialdialogueandreg-ulationtosupportqualityemployment.
Abouttheauthors
Pawe?GmyrekisSeniorResearcherintheResearchDepartmentoftheILO.JanineBergisSeniorEconomistintheResearchDepartmentoftheILO.DavidBescondisDataScientistintheILO’sDepartmentofStatistics.
02ILOWorkingPaper96
Tableofcontents
Abstract
Abouttheauthors
Acronyms
01
01
05
X
Introduction
07
X
1
MethodsandData
1.1.ISCOdataonoccupationsandtasks
1.2.Promptdesignandsequence
10
11
12
X
2
AssessmentofthePredictions,RobustnessTestsandtheBoundsforAnalysis
17
X
3
Results
3.1.Automationvsaugmentation:distributionofscoresacrosstasksandoccupations
20
24
X
4
Exposedoccupationsasashareofemployment:globalandincome-basedestimates
4.1.AugmentationvsAutomation:ILOmicrodata
4.2.AugmentationvsAutomation:globalestimate
4.3.Thebigunknown
30
30
32
36
X
5
Managingthetransition:Policiestoaddressautomation,augmentationandthegrowingdigitaldivide
5.1Mitigatingthenegativeeffectsofautomation
5.2Ensuringjobqualityunderaugmentation
5.3Addressingthedigitaldivide
38
38
39
40
X
Conclusion
43
Appendix1.CountrieswithmissingISCO-084-digitdata:estimationprocedure45
References47
AcknowledgementsanduseofGPT51
03ILOWorkingPaper96
ListofFigures
Figure1.Meanautomationscoresbyoccupation,basedonISCOandGPTtasks21
Figure2.TaskswithmediumandhighGPT-exposure,byoccupationalcategory(ISCO1-digit)24
Figure3.Boxplotoftask-levelscoresbyISCO4d,groupedbyISCO1d25
Figure4.Augmentationvsautomationpotentialatoccupationallevel27
Figure5.Occupationswithhighautomationpotential28
Figure6.Occupationswithhighaugmentationpotential29
Figure7a.Automationvsaugmentationpotential:sharesoftotalemployment,microdata
for59countries30
Figure7b.Automationvsaugmentationpotential:sharesoftotalemploymentineachsex
(ILOmicrodata)31
Figure8.CountrycoveragebasedonthelevelofdigitsinISCO-08(ILOdata)33
Figure9a.Globalestimates:jobswithaugmentationandautomationpotentialasshareof
totalemployment34
Figure9b.Automationvsaugmentationpotential:sharesoftotalemploymentforeachsex
(globalestimate)35
Figure10.Occupationswithhighautomationpotential,byISCO4-digitandincomegroup36
Figure11a.The“BigUnknown”:occupationsbetweenaugmentationandautomationpotential37
Figure11b.The“BigUnknown”:shareoftotalemployment,byincomegroup(globalestimate)37
Figure11.Shareofpopulationnotusingtheinternet41
Figure12.Aclassicgrowthpath:incomeandoccupationaldiversification42
04ILOWorkingPaper96
ListofTables
Table1.ISCO-08Structureofoccupationsandtasksusedinthestudy11
Table2.SampleoftasksanddefinitionsfromISCOandpredictedbyGPT-414
Table3.Sampleoftask-levelscores(high-incomecountrycontext)15
Table4.aTestofscoreconsistency(100task-levelpredictions)17
Table4.bTaskswithhighautomationpotentialclusteredintothematic22
groups*
Table5.Groupingofoccupationsbasedontask-levelscores26
Table6.MicrodatacoveragebylevelsISCO-08:numberofcountries32
05ILOWorkingPaper96
Acronyms
3G
ThirdGeneration(referringtoagenerationofstandardsformobiletelecom-munications)
Ada
AlanguagemodelbyOpenAIusedtogenerateembeddings
AGI
ArtificialGeneralIntelligence
AI
ArtificialIntelligence
ANN
ArtificialNeuralNetwork
API
ApplicationProgrammingInterface
ATMs
AutomatedTellerMachines
CPU
CentralProcessingUnit
DL
DeepLearning
DOLE
DepartmentofLaborandEmployment
ESCO
EuropeanSkills,Competences,QualificationsandOccupations
GPTs
GenerativePre-TrainedTransformers
GPT-4
GenerativePre-TrainedTransformer4
GPU
GraphicsProcessingUnit
HIC
High-IncomeCountries
ICT
InformationandCommunicationsTechnology
ILO
InternationalLabourOrganization
ISCO
InternationalStandardClassificationofOccupations
ISCO-08
InternationalStandardClassificationofOccupations2008
K-Means
K-MeansClusteringAlgorithm
LFS
LabourForceSurveys
LIC
Low-IncomeCountries
LLMs
LargeLanguageModels
06ILOWorkingPaper96
LMIC
Lower-Middle-IncomeCountries
ML
MachineLearning
NLP
NaturalLanguageProcessing
OECD
OrganisationforEconomicCo-operationandDevelopment
O*NET
OccupationalInformationNetwork
OpenAI
OpenArtificialIntelligence(organization'sname)
Python
High-levelprogramminglanguage
RL
ReinforcementLearning
SD
StandardDeviation
SMEs
SmallandMedium-sizedEnterprises
UMIC
Upper-Middle-IncomeCountries
US
UnitedStates
USD
UnitedStatesDollar
UMIC
Upper-Middle-IncomeCountries
US
UnitedStates
07ILOWorkingPaper96
XIntroduction
Eachnewwaveoftechnologicalprogressintensifiesdebatesonautomationandjobs.CurrentdebatesonArtificialIntelligence(AI)andjobsrecallthoseoftheearly1900swiththeintroduc-tionofthemovingassemblyline,oreventhoseofthe1950sand1960s,whichfollowedtheintro-ductionoftheearlymainframecomputers.Whiletherehavebeensomenodstothealienationthattechnologycanbringbystandardizingandcontrollingworkprocesses,inmostcases,thedebateshavecentredontwoopposingviewpoints:theoptimists,whoviewnewtechnologyasthemeanstorelieveworkersfromthemostarduoustasks,andthepessimists,whoraisealarmabouttheimminentthreattojobsandtheriskofmassunemployment.
Whathaschangedindebatesontechnologyandworkers,however,isthetypesofworkersaf-fected.Whiletheadvancesintechnologyintheearly,midandevenlate-1900swereprimarilyfocusedonmanualworkers,technologicaldevelopmentsincethe2010s,inparticulartherapidprogressofMachineLearning(ML),hascentredontheabilityofcomputerstoperformnon-rou-tine,cognitivetasks,andbyconsequencepotentiallyaffectwhite-collarorknowledgeworkers.Inaddition,thesetechnologicaladvancementshaveoccurredinthecontextofmuchstrong-erinterconnectednessofeconomiesacrosstheglobe,leadingtoapotentiallylargerexposurethanlocation-based,factory-levelapplications.Yetdespitethesedevelopments,toanaverageworker,eveninthemosthighlydevelopedcountries,thepotentialimplicationsofAIhave,untilrecently,remainedlargelyabstract.
ThelaunchofChatGPTmarkedanimportantadvanceinthepublic’sexposuretoAItools.Inthisnewwaveoftechnologicaltransformation,machinelearningmodelshavestartedtoleavethelabsandbegininteractingwiththepublic,demonstratingtheirstrengthsandweaknessesindailyuse.ThechatfunctiondramaticallyshortenedthedistancebetweenAIandtheenduser,simultaneouslyprovidingaplatformforawiderangeofcustom-madeapplicationsandinno-vations.Giventhesesignificantadvancements,itisnotsurprisingthatconcernsoverpotentialjoblosshaveresurged.
WhileitisimpossibletopredicthowgenerativeAIwillfurtherdevelop,thecurrentcapabilitiesandfuturepotentialofthistechnologyarecentraltodiscussionsofitsimpactonjobs.Scepticstendtobelievethatthesemachinesarenothingmorethan“stochasticparrots”–powerfultextsummarizers,incapableof“l(fā)earning”andproducingoriginalcontent,withlittlefutureforgen-eralpurposeuseandunsustainablecomputingcosts(Benderetal.2021).Ontheotherhand,morerecenttechnicalliteraturefocusedontestingthelimitsofthelatestmodelssuggestsanincreasingcapabilitytocarryout“novelanddifficulttasksthatspanmathematics,coding,vision,medicine,law,psychologyandmore”,andageneralabilitytoproduceresponsesexhibitingsomeformsofearly“reasoning”(Bubecketal.2023).Someassessmentsgoasfarassuggestingthatmachinelearningmodels,especiallythosebasedonlargeneuralnetworksusedbyGenerativePre-trainedTransformers(GPT,seeTextBox1),mighthavethepotentialtoeventuallybecomeageneral-purposetechnology(Goldfarb,Taska,andTeodoridis2023;Eloundouetal.2023).1Thiswouldhavemultipliereffectsontheeconomyandlabourmarkets,asnewproductsandservic-eswouldlikelyspringfromthistechnologicalplatform.
Associalscientists,wearenotinpositiontotakesidesinthesetechnicaldebates.Instead,wefocusonthealreadydemonstratedcapabilitiesofGPT-4,includingcustom-madechatbotswithretrievalofprivatecontent(suchascollectionsdocuments,e-mailsandothermaterial),natu-rallanguageprocessingfunctionsofcontentextraction,preparationofsummaries,automatedcontentgeneration,semantictextsearchesandbroadersemanticanalysisbasedontextem-beddings.LargeLanguageModels(LLMs)canalsobecombinedwithotherMLmodels,suchas
1Thethreemaincharacteristicsofgeneral-purposetechnologiesarepervasiveness,abilitytocontinueimprovingovertime,andabil-itytospawnfurtherinnovation(JovanovicandRousseau,2005).
08ILOWorkingPaper96
speech-to-textandtext-to-speechgeneration,potentiallyexpandingtheirinteractionwithdif-ferenttypesofhumantasks.Finally,thepotentialofinteractingwithlivewebcontentthroughcustomagentsandplugins,aswellasthemultimodal(notexclusivetotext,butalsocapableofreadingandgeneratingimage)characterofGPT-4makesitlikelythatthistypeoftechnologywillexpandintonewareas,therebyincreasingitsimpactonlabour.
Departingfromtheseobservations,thisstudyseekstoaddtheglobalperspectivetothealreadylivelydebateonpossiblechangesthatmayresultinthelabourmarketsasaconsequenceoftherecentadventofgenerativeAI.Westressthefocusofourworkontheconceptsof“exposure”and“potential”,whichdoesnotimplyautomation,butratherlistsoccupationsandassociatedemploymentfiguresforjobsthataremorelikelytobeaffectedbyGPT-4andsimilartechnologiesinthecomingyears.Theobjectiveofthisexerciseisnottoderiveheadlinefigures,butrathertoanalysethedirectionofpossiblechangesinordertofacilitatethedesignofappropriatepolicyresponses,includingthepossibleconsequencesonjobquality.
Theanalysisisbasedon4-digitoccupationalclassificationsandtheircorrespondingtasksintheISCO-08standard.ItusestheGPT-4modeltoestimateoccupationalandtask-levelscoresofex-posuretoGPTtechnologyandsubsequentlylinksthesescorestoofficialILOstatisticstoderiveglobalemploymentestimates.Wealsoapplyembedding-basedtextanalysisandsemanticclus-teringalgorithmstoprovideabetterunderstandingofthetypesoftasksthathaveahighauto-mationpotentialanddiscusshowtheautomatingandaugmentingeffectswillstronglydependonarangeofadditionalfactorsandspecificcountrycontext.
Wediscusstheresultsofthisanalysisinthebroadercontextoflabourmarkettransformations.Weputparticularfocusonthecurrentdisparitiesindigitalaccessacrosscountriesofdifferentincomelevels,thepotentialforthisnewwaveoftechnologicaltransformationtoaggravatesuchdisparities,andtheensuingconsequencesonproductivityandincome.Wealsogiveconsider-ationtojobswithhighestautomationandaugmentationpotentialanddiscussgender-specificdifferences.Theanalysisdoesnottakeintoaccountthenewjobsthatwillbecreatedtoaccom-panythetechnologicaladvancement.Twentyyearsago,therewerenosocialmediamanagers,thirtyyearsagotherewerefewwebdesigners,andnoamountofdatamodellingwouldhaverenderedaprioripredictionsconcerningavastarrayofotheroccupationsthathaveemergedinthepastdecades.AsdemonstratedbyAutoretal.(2022),some60percentofemploymentin2018intheUnitedStateswasinjobsthatdidnotexistinthe1940s.
Indeed,themainvalueofstudiessuchasthisoneisnotinthepreciseestimates,butratherinunderstandingthepossibledirectionofchange.Suchinsightsarenecessaryforproactivelyde-signingpoliciesthatcansupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Forthisreason,wealsoemphasizethepotentialeffectsoftechnologicalchangeonworkingconditionsandjobqualityandtheneedforworkplaceconsul-tationandregulationtosupportthecreationofqualityemploymentandtomanagetransitionsinthelabourmarket.
Wehopethatthisresearchwillcontributetoneededpolicydebatesondigitaltransformationintheworldofwork.Whiletheanalysisoutlinespotentialimplicationsfordifferentoccupationalcategories,theoutcomesofthetechnologicaltransitionarenotpre-determined.Itishumansthatarebehindthedecisiontoincorporatesuchtechnologiesanditishumansthatneedtoguidethetransitionprocess.Itisourhopethatthisinformationcansupportthedevelopmentofpoliciesneededtomanagethesechangesforthebenefitofcurrentandfuturesocieties.Weintendtousethisbroadglobalstudyasanopeningtomorein-depthanalysesatcountrylevel,withaparticularfocusondevelopingcountries.
09ILOWorkingPaper96
XTextBox1:WhatareGPTs?
GenerativePre-TrainedTransformersbelongtothefamilyofLargeLanguageModels–atypeofMachineLearningmod-elbasedonneuralnetworks.The“generative”partreferstotheirabilitytoproduceoutputofacreativenature,whichinlanguagemodelscantaketheformofsentences,paragraphs,orentiretextstructures,withcharacteristicsoftenun-distinguishablefromthatproducedbyhumans.“Pre-trained”referstotheinitialtrainingonalargecorpusoftextdata,typicallythroughunsupervisedorself-supervisedlearning,duringwhichthemodellearnsaboutthetextstructurebytemporarilymaskingpartofthecontentandtryingtominimizeerrorsinthepredictionofthemaskedwords.Followingpre-training,suchmodelsarefurtherfine-tunedwiththeuseoflabelleddataandso-called“reinforcementlearning”,makingthemmoresuitableforspecifictasks.Thispartoftrainingisoftenperceivedasaspecializedjob,executedbyahandfuloftechnicalexperts.Inreality,itislabourintensiveandinvolvesmanyinvisiblecontributors(Dzieza2023).Itsprerequisiteistheproductionofvastamountsoflabelleddata,typicallydonebyworkersoncrowdsourcingplatforms.“Transformers”refertotheunderlyingmodelarchitecture,whichusesnumerousmechanisms,suchasattentionandself-attentionframeworks,todevelopweightsrelatedtotheimportanceoftextelements,suchaswordsinasentence,whicharesubsequentlyusedforpredictions(Vaswanietal.2017).
WhileGPTspecificallyreferstomodelsdevelopedbyOpenAI(GPT-1,2,3and4),thistypeofarchitectureisusedbymanymorelanguagemodelsalreadyavailablecommercially.ThelaunchofChatGPTon30November2022madeGPTsmorepopularamongthepublic,asitmadeitpossibleforindividualswithnoprogrammingknowledgetointeractwithGPT-3(andeventuallyGPT-4)throughachatbotfunctionwithahuman-liketone.Forresearchpurposesandmorecom-plexapplications,suchlanguagemodelsaretypicallymorepowerfulwhenusedthroughanApplicationProgrammingInterface(API).AnAPIisadeveloperaccesspointthatreliesonaquery-responseprotocolwiththeuseofprogrammingsoftware.Inourcase,werelyonaPythonscriptbasedonOpenAIlibrary,designedtoconnecttoGPT-4model,provideafine-tunedpromptandreceivearesponse,whichissubsequentlystoredinadatabaseonourserver.ThisenablesbulkprocessingoflargenumbersofrequestsandreliesontheGPT-4modelwithmoreparametersthanwhatisaccessiblethroughthepublicChatfunction.
10ILOWorkingPaper96
X1MethodsandData
Therearetwoprincipalapproachestotheanalysisofautomationofoccupations(GeorgieffandHyee2021).Thefirstistousedataonjobvacanciestounderstandhowdemandforspecificskillsevolvesovertime.Moststudiesusingthisapproachharnessdatafromonlinerecruitmentplat-forms(CammeraatandSquicciarini2021;Acemogluetal.2022)tomeasurethefrequencyofref-erencestoAI(ortoanyothertechnologyofinterest)inthetextofthejobdescription.Theseref-erencesarethenusedasaproxyforthedemandforspecificskillsand,byitsextension,aproxyfortherateoftechnologicaladoptionattheenterpriselevel.Thisapproachworkswellincoun-trieswithahighonlinepresenceinrecruitment,thoughitdoesnotalwayscapturetheindus-triesaffectedasaresultofsubcontracting.Theapproach,however,islesswellsuitedforaglobalstudycoveringcountrieswithlessonlinepresence,asmostvacanciesarenotadvertisedonon-lineplatformsbutrecruitedthroughothermeansofcommunication(GeorgieffandHyee2021).
Thesecondapproachistofocusonoccupationalstructures,withtheideaofestimatingtheau-tomationpotentialoftasksorskillsthatmakeupagivenjob.Theadvantageofthismethodisthatsuchoccupationalclassificationscaneasilybelinkedtoofficiallabourmarketstatistics,whichisofparticularimportanceforunderstandingglobal,regionalandincome-baseddiffer-entials.Thisstrandofliteratureisrich,butfrequentlymisunderstood,especiallywhenitcomestocommunicatingitsfindingstothepublic,asmediainterpretationstendtoblurthedistinc-tionbetweenautomationpotentialandactualdeploymentintheworkplace.Forexample,FreyandOsborne’s(2013,2017)influentialstudyhasbeencitedover12,000times,oftenfordiffer-enttypesofdoomsdaypronouncements,eventhoughtheauthorswereclearaboutthedistinc-tionbetweenpotentialandpredictedeffects.Arangeofstudiesfollowthisresearchtradition,attemptingtocalculatedifferenttypesofoccupationalautomationscoresinOECDcountries(Brynjolfsson,Mitchell,andRock2018;Felten,Raj,andSeamans2018;Felten,Raj,andSeamans2019;AcemogluandRestrepo2020;FossenandSorgner2022)orevencombiningoccupationalandjobpostingdata(GeorgieffandHyee2021).Someauthorshavealsotakenupthechallengeofproducingbetterestimatesfordevelopingcountries(BalliesterandElsheikhi2018),oftenbytryingtolinkdetailedoccupationaldataand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保型共享單車運營管理合同
- 2024年餐飲行業(yè)培訓資料保密合同3篇
- 2024年高端電子產品購買合同
- 2024年花卉育苗基質購買與交付合同
- 2024水利工程渣土清運合同
- 2024年電子設備借款合同精簡版
- 2024年能源管理服務合同(含空調系統(tǒng))
- 2024無人機航拍技術服務合同
- 2025版精細化管理房產買賣代理合同范本3篇
- 2024暑假校園兼職人員服務合同3篇
- 樁基檢測的環(huán)保措施
- 術前術后健康宣教
- 新東方國際游學報名表
- 數(shù)學八年級下冊第十七章 小結與復習
- 基層動物防疫員培訓課件
- 《哈佛管理制度全集-中文》
- 仁愛版九年級上冊英語中考專題復習訓練課件
- 部編版四年級語文下冊第5單元大單元整體教學作業(yè)設計(教案配套)
- 【超星爾雅學習通】【紅色經典影片與近現(xiàn)代中國發(fā)展(首都師范大學)】章節(jié)測試及答案
- 市政工程工程開工報審表及開工令
- 2022-2023學年新疆維吾爾自治區(qū)烏魯木齊市小學語文四年級上冊期末通關試卷
評論
0/150
提交評論