生成式AI和就業(yè):對工作數(shù)量和質量的潛在全球影響分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第1頁
生成式AI和就業(yè):對工作數(shù)量和質量的潛在全球影響分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第2頁
生成式AI和就業(yè):對工作數(shù)量和質量的潛在全球影響分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第3頁
生成式AI和就業(yè):對工作數(shù)量和質量的潛在全球影響分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第4頁
生成式AI和就業(yè):對工作數(shù)量和質量的潛在全球影響分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第5頁
已閱讀5頁,還剩72頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ILOWorkingPaper96

August/2023

X

GenerativeAIandJobs:Aglobal

analysisofpotentialeffectsonjob

quantityandquality

Authors/Pawe?Gmyrek,JanineBerg,DavidBescond

Copyright?InternationalLabourOrganization2023

ThisisanopenaccessworkdistributedundertheCreativeCommonsAttribution4.0InternationalLicense(

/licenses/by/4.0/

).Userscanreuse,share,adaptandbuildupontheoriginalwork,asdetailedintheLicense.TheILOmustbeclearlycreditedastheown-eroftheoriginalwork.TheuseoftheemblemoftheILOisnotpermittedinconnectionwithusers’work.

Attribution–Theworkmustbecitedasfollows:Gmyrek,P.,Berg,J.,Bescond,D.GenerativeAIandJobs:Aglobalanalysisofpotentialeffectsonjobquantityandquality.ILOWorkingPaper96.

Geneva:InternationalLabourOffice,2023.

Translations–Incaseofatranslationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThistranslationwasnotcreatedbytheInternationalLabourOrganization(ILO)andshouldnotbeconsideredanofficialILOtranslation.TheILOisnotresponsibleforthecontentoraccuracyofthistranslation.

Adaptations–Incaseofanadaptationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThisisanadaptationofanoriginalworkbytheInternationalLabourOrganization(ILO).ResponsibilityfortheviewsandopinionsexpressedintheadaptationrestssolelywiththeauthororauthorsoftheadaptationandarenotendorsedbytheILO.

ThisCClicensedoesnotapplytonon-ILOcopyrightmaterialsincludedinthispublication.Ifthematerialisattributedtoathirdparty,theuserofsuchmaterialissolelyresponsibleforclearingtherightswiththerightholder.

Anydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitra-tioninaccordancewiththeArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL).Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.

AllqueriesonrightsandlicensingshouldbeaddressedtotheILOPublishingUnit(RightsandLicensing),1211Geneva22,Switzerland,orbyemailto

rights@

.

ISBN9789220395356(print),ISBN9789220395363(webPDF),ISBN9789220395370(epub),ISBN9789220395387(mobi),ISBN9789220395394(html).ISSN2708-3438(print),ISSN2708-3446(digital)

/10.54394/FHEM8239

ThedesignationsemployedinILOpublications,whichareinconformitywithUnitedNationspractice,andthepresentationofmaterialthereindonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheILOconcerningthelegalstatusofanycountry,areaorterritoryorofitsauthorities,orconcerningthedelimitationofitsfrontiers.

Theresponsibilityforopinionsexpressedinsignedarticles,studiesandothercontributionsrestssolelywiththeirauthors,andpublicationdoesnotconstituteanendorsementbytheILOoftheopinionsexpressedinthem.

Referencetonamesoffirmsandcommercialproductsandprocessesdoesnotimplytheiren-dorsementbytheILO,andanyfailuretomentionaparticularfirm,commercialproductorpro-cessisnotasignofdisapproval.

InformationonILOpublicationsanddigitalproductscanbefoundat:

/publns

ILOWorkingPaperssummarizetheresultsofILOresearchinprogress,andseektostimulatediscussionofarangeofissuesrelatedtotheworldofwork.CommentsonthisILOWorkingPaperarewelcomeandcanbesentto

RESEARCH@

,

berg@

.

Authorizationforpublication:RichardSamans,DirectorRESEARCH

ILOWorkingPaperscanbefoundat:

/global/publications/working-papers

Suggestedcitation:

Gmyrek,P.,Berg,J.,Bescond,D.2023.GenerativeAIandJobs:Aglobalanalysisofpotentialef-fectsonjobquantityandquality,ILOWorkingPaper96(Geneva,ILO).

/10.54394/

FHEM8239

01ILOWorkingPaper96

Abstract

ThisstudypresentsaglobalanalysisofthepotentialexposureofoccupationsandtaskstoGenerativeAI,andspecificallytoGenerativePre-TrainedTransformers(GPTs),andthepossibleimplicationsofsuchexposureforjobquantityandquality.ItusestheGPT-4modeltoestimatetask-levelscoresofpotentialexposureandthenestimatespotentialemploymenteffectsatthegloballevelaswellasbycountryincomegroup.Despiterepresentinganupper-boundestimateofexposure,wefindthatonlythebroadoccupationofclericalworkishighlyexposedtothetech-nologywith24percentofclericaltasksconsideredhighlyexposedandanadditional58percentwithmedium-levelexposure.Fortheotheroccupationalgroups,thegreatestshareofhighlyex-posedtasksoscillatesbetween1and4percent,andmediumexposedtasksdonotexceed25percent.Asaresult,themostimportantimpactofthetechnologyislikelytobeofaugmentingwork–automatingsometaskswithinanoccupationwhileleavingtimeforotherduties–asop-posedtofullyautomatingoccupations.

Thepotentialemploymenteffects,whetheraugmentingorautomating,varywidelyacrosscoun-tryincomegroups,duetodifferentoccupationalstructures.Inlow-incomecountries,only0.4percentoftotalemploymentispotentiallyexposedtoautomationeffects,whereasinhigh-incomecountriesthesharerisesto5.5percent.Theeffectsarehighlygendered,withmorethandoubletheshareofwomenpotentiallyaffectedbyautomation.Thegreaterimpactisfromaugmenta-tion,whichhasthepotentialtoaffect10.4percentofemploymentinlow-incomecountriesand13.4percentofemploymentinhigh-incomecountries.However,sucheffectsdonotconsiderinfrastructureconstraints,whichwillimpedethepossibilityforuseinlower-incomecountriesandlikelyincreasetheproductivitygap.

Westressthattheprimaryvalueofthisanalysisisnotthepreciseestimates,butratherthein-sightsthattheoveralldistributionofsuchscoresprovidesaboutthenatureofpossiblechanges.Suchinsightscanencouragegovernmentsandsocialpartnerstoproactivelydesignpoliciesthatsupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Moreover,thelikelyramificationsonjobqualitymightbeofgreaterconsequencethanthequantitativeimpacts,bothwithrespecttothenewjobscreatedbecauseofthetechnology,butalsothepotentialeffectsonworkintensityandautonomywhenthetechnologyisintegrat-edintotheworkplace.Forthisreason,wealsoemphasizetheneedforsocialdialogueandreg-ulationtosupportqualityemployment.

Abouttheauthors

Pawe?GmyrekisSeniorResearcherintheResearchDepartmentoftheILO.JanineBergisSeniorEconomistintheResearchDepartmentoftheILO.DavidBescondisDataScientistintheILO’sDepartmentofStatistics.

02ILOWorkingPaper96

Tableofcontents

Abstract

Abouttheauthors

Acronyms

01

01

05

X

Introduction

07

X

1

MethodsandData

1.1.ISCOdataonoccupationsandtasks

1.2.Promptdesignandsequence

10

11

12

X

2

AssessmentofthePredictions,RobustnessTestsandtheBoundsforAnalysis

17

X

3

Results

3.1.Automationvsaugmentation:distributionofscoresacrosstasksandoccupations

20

24

X

4

Exposedoccupationsasashareofemployment:globalandincome-basedestimates

4.1.AugmentationvsAutomation:ILOmicrodata

4.2.AugmentationvsAutomation:globalestimate

4.3.Thebigunknown

30

30

32

36

X

5

Managingthetransition:Policiestoaddressautomation,augmentationandthegrowingdigitaldivide

5.1Mitigatingthenegativeeffectsofautomation

5.2Ensuringjobqualityunderaugmentation

5.3Addressingthedigitaldivide

38

38

39

40

X

Conclusion

43

Appendix1.CountrieswithmissingISCO-084-digitdata:estimationprocedure45

References47

AcknowledgementsanduseofGPT51

03ILOWorkingPaper96

ListofFigures

Figure1.Meanautomationscoresbyoccupation,basedonISCOandGPTtasks21

Figure2.TaskswithmediumandhighGPT-exposure,byoccupationalcategory(ISCO1-digit)24

Figure3.Boxplotoftask-levelscoresbyISCO4d,groupedbyISCO1d25

Figure4.Augmentationvsautomationpotentialatoccupationallevel27

Figure5.Occupationswithhighautomationpotential28

Figure6.Occupationswithhighaugmentationpotential29

Figure7a.Automationvsaugmentationpotential:sharesoftotalemployment,microdata

for59countries30

Figure7b.Automationvsaugmentationpotential:sharesoftotalemploymentineachsex

(ILOmicrodata)31

Figure8.CountrycoveragebasedonthelevelofdigitsinISCO-08(ILOdata)33

Figure9a.Globalestimates:jobswithaugmentationandautomationpotentialasshareof

totalemployment34

Figure9b.Automationvsaugmentationpotential:sharesoftotalemploymentforeachsex

(globalestimate)35

Figure10.Occupationswithhighautomationpotential,byISCO4-digitandincomegroup36

Figure11a.The“BigUnknown”:occupationsbetweenaugmentationandautomationpotential37

Figure11b.The“BigUnknown”:shareoftotalemployment,byincomegroup(globalestimate)37

Figure11.Shareofpopulationnotusingtheinternet41

Figure12.Aclassicgrowthpath:incomeandoccupationaldiversification42

04ILOWorkingPaper96

ListofTables

Table1.ISCO-08Structureofoccupationsandtasksusedinthestudy11

Table2.SampleoftasksanddefinitionsfromISCOandpredictedbyGPT-414

Table3.Sampleoftask-levelscores(high-incomecountrycontext)15

Table4.aTestofscoreconsistency(100task-levelpredictions)17

Table4.bTaskswithhighautomationpotentialclusteredintothematic22

groups*

Table5.Groupingofoccupationsbasedontask-levelscores26

Table6.MicrodatacoveragebylevelsISCO-08:numberofcountries32

05ILOWorkingPaper96

Acronyms

3G

ThirdGeneration(referringtoagenerationofstandardsformobiletelecom-munications)

Ada

AlanguagemodelbyOpenAIusedtogenerateembeddings

AGI

ArtificialGeneralIntelligence

AI

ArtificialIntelligence

ANN

ArtificialNeuralNetwork

API

ApplicationProgrammingInterface

ATMs

AutomatedTellerMachines

CPU

CentralProcessingUnit

DL

DeepLearning

DOLE

DepartmentofLaborandEmployment

ESCO

EuropeanSkills,Competences,QualificationsandOccupations

GPTs

GenerativePre-TrainedTransformers

GPT-4

GenerativePre-TrainedTransformer4

GPU

GraphicsProcessingUnit

HIC

High-IncomeCountries

ICT

InformationandCommunicationsTechnology

ILO

InternationalLabourOrganization

ISCO

InternationalStandardClassificationofOccupations

ISCO-08

InternationalStandardClassificationofOccupations2008

K-Means

K-MeansClusteringAlgorithm

LFS

LabourForceSurveys

LIC

Low-IncomeCountries

LLMs

LargeLanguageModels

06ILOWorkingPaper96

LMIC

Lower-Middle-IncomeCountries

ML

MachineLearning

NLP

NaturalLanguageProcessing

OECD

OrganisationforEconomicCo-operationandDevelopment

O*NET

OccupationalInformationNetwork

OpenAI

OpenArtificialIntelligence(organization'sname)

Python

High-levelprogramminglanguage

RL

ReinforcementLearning

SD

StandardDeviation

SMEs

SmallandMedium-sizedEnterprises

UMIC

Upper-Middle-IncomeCountries

US

UnitedStates

USD

UnitedStatesDollar

UMIC

Upper-Middle-IncomeCountries

US

UnitedStates

07ILOWorkingPaper96

XIntroduction

Eachnewwaveoftechnologicalprogressintensifiesdebatesonautomationandjobs.CurrentdebatesonArtificialIntelligence(AI)andjobsrecallthoseoftheearly1900swiththeintroduc-tionofthemovingassemblyline,oreventhoseofthe1950sand1960s,whichfollowedtheintro-ductionoftheearlymainframecomputers.Whiletherehavebeensomenodstothealienationthattechnologycanbringbystandardizingandcontrollingworkprocesses,inmostcases,thedebateshavecentredontwoopposingviewpoints:theoptimists,whoviewnewtechnologyasthemeanstorelieveworkersfromthemostarduoustasks,andthepessimists,whoraisealarmabouttheimminentthreattojobsandtheriskofmassunemployment.

Whathaschangedindebatesontechnologyandworkers,however,isthetypesofworkersaf-fected.Whiletheadvancesintechnologyintheearly,midandevenlate-1900swereprimarilyfocusedonmanualworkers,technologicaldevelopmentsincethe2010s,inparticulartherapidprogressofMachineLearning(ML),hascentredontheabilityofcomputerstoperformnon-rou-tine,cognitivetasks,andbyconsequencepotentiallyaffectwhite-collarorknowledgeworkers.Inaddition,thesetechnologicaladvancementshaveoccurredinthecontextofmuchstrong-erinterconnectednessofeconomiesacrosstheglobe,leadingtoapotentiallylargerexposurethanlocation-based,factory-levelapplications.Yetdespitethesedevelopments,toanaverageworker,eveninthemosthighlydevelopedcountries,thepotentialimplicationsofAIhave,untilrecently,remainedlargelyabstract.

ThelaunchofChatGPTmarkedanimportantadvanceinthepublic’sexposuretoAItools.Inthisnewwaveoftechnologicaltransformation,machinelearningmodelshavestartedtoleavethelabsandbegininteractingwiththepublic,demonstratingtheirstrengthsandweaknessesindailyuse.ThechatfunctiondramaticallyshortenedthedistancebetweenAIandtheenduser,simultaneouslyprovidingaplatformforawiderangeofcustom-madeapplicationsandinno-vations.Giventhesesignificantadvancements,itisnotsurprisingthatconcernsoverpotentialjoblosshaveresurged.

WhileitisimpossibletopredicthowgenerativeAIwillfurtherdevelop,thecurrentcapabilitiesandfuturepotentialofthistechnologyarecentraltodiscussionsofitsimpactonjobs.Scepticstendtobelievethatthesemachinesarenothingmorethan“stochasticparrots”–powerfultextsummarizers,incapableof“l(fā)earning”andproducingoriginalcontent,withlittlefutureforgen-eralpurposeuseandunsustainablecomputingcosts(Benderetal.2021).Ontheotherhand,morerecenttechnicalliteraturefocusedontestingthelimitsofthelatestmodelssuggestsanincreasingcapabilitytocarryout“novelanddifficulttasksthatspanmathematics,coding,vision,medicine,law,psychologyandmore”,andageneralabilitytoproduceresponsesexhibitingsomeformsofearly“reasoning”(Bubecketal.2023).Someassessmentsgoasfarassuggestingthatmachinelearningmodels,especiallythosebasedonlargeneuralnetworksusedbyGenerativePre-trainedTransformers(GPT,seeTextBox1),mighthavethepotentialtoeventuallybecomeageneral-purposetechnology(Goldfarb,Taska,andTeodoridis2023;Eloundouetal.2023).1Thiswouldhavemultipliereffectsontheeconomyandlabourmarkets,asnewproductsandservic-eswouldlikelyspringfromthistechnologicalplatform.

Associalscientists,wearenotinpositiontotakesidesinthesetechnicaldebates.Instead,wefocusonthealreadydemonstratedcapabilitiesofGPT-4,includingcustom-madechatbotswithretrievalofprivatecontent(suchascollectionsdocuments,e-mailsandothermaterial),natu-rallanguageprocessingfunctionsofcontentextraction,preparationofsummaries,automatedcontentgeneration,semantictextsearchesandbroadersemanticanalysisbasedontextem-beddings.LargeLanguageModels(LLMs)canalsobecombinedwithotherMLmodels,suchas

1Thethreemaincharacteristicsofgeneral-purposetechnologiesarepervasiveness,abilitytocontinueimprovingovertime,andabil-itytospawnfurtherinnovation(JovanovicandRousseau,2005).

08ILOWorkingPaper96

speech-to-textandtext-to-speechgeneration,potentiallyexpandingtheirinteractionwithdif-ferenttypesofhumantasks.Finally,thepotentialofinteractingwithlivewebcontentthroughcustomagentsandplugins,aswellasthemultimodal(notexclusivetotext,butalsocapableofreadingandgeneratingimage)characterofGPT-4makesitlikelythatthistypeoftechnologywillexpandintonewareas,therebyincreasingitsimpactonlabour.

Departingfromtheseobservations,thisstudyseekstoaddtheglobalperspectivetothealreadylivelydebateonpossiblechangesthatmayresultinthelabourmarketsasaconsequenceoftherecentadventofgenerativeAI.Westressthefocusofourworkontheconceptsof“exposure”and“potential”,whichdoesnotimplyautomation,butratherlistsoccupationsandassociatedemploymentfiguresforjobsthataremorelikelytobeaffectedbyGPT-4andsimilartechnologiesinthecomingyears.Theobjectiveofthisexerciseisnottoderiveheadlinefigures,butrathertoanalysethedirectionofpossiblechangesinordertofacilitatethedesignofappropriatepolicyresponses,includingthepossibleconsequencesonjobquality.

Theanalysisisbasedon4-digitoccupationalclassificationsandtheircorrespondingtasksintheISCO-08standard.ItusestheGPT-4modeltoestimateoccupationalandtask-levelscoresofex-posuretoGPTtechnologyandsubsequentlylinksthesescorestoofficialILOstatisticstoderiveglobalemploymentestimates.Wealsoapplyembedding-basedtextanalysisandsemanticclus-teringalgorithmstoprovideabetterunderstandingofthetypesoftasksthathaveahighauto-mationpotentialanddiscusshowtheautomatingandaugmentingeffectswillstronglydependonarangeofadditionalfactorsandspecificcountrycontext.

Wediscusstheresultsofthisanalysisinthebroadercontextoflabourmarkettransformations.Weputparticularfocusonthecurrentdisparitiesindigitalaccessacrosscountriesofdifferentincomelevels,thepotentialforthisnewwaveoftechnologicaltransformationtoaggravatesuchdisparities,andtheensuingconsequencesonproductivityandincome.Wealsogiveconsider-ationtojobswithhighestautomationandaugmentationpotentialanddiscussgender-specificdifferences.Theanalysisdoesnottakeintoaccountthenewjobsthatwillbecreatedtoaccom-panythetechnologicaladvancement.Twentyyearsago,therewerenosocialmediamanagers,thirtyyearsagotherewerefewwebdesigners,andnoamountofdatamodellingwouldhaverenderedaprioripredictionsconcerningavastarrayofotheroccupationsthathaveemergedinthepastdecades.AsdemonstratedbyAutoretal.(2022),some60percentofemploymentin2018intheUnitedStateswasinjobsthatdidnotexistinthe1940s.

Indeed,themainvalueofstudiessuchasthisoneisnotinthepreciseestimates,butratherinunderstandingthepossibledirectionofchange.Suchinsightsarenecessaryforproactivelyde-signingpoliciesthatcansupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Forthisreason,wealsoemphasizethepotentialeffectsoftechnologicalchangeonworkingconditionsandjobqualityandtheneedforworkplaceconsul-tationandregulationtosupportthecreationofqualityemploymentandtomanagetransitionsinthelabourmarket.

Wehopethatthisresearchwillcontributetoneededpolicydebatesondigitaltransformationintheworldofwork.Whiletheanalysisoutlinespotentialimplicationsfordifferentoccupationalcategories,theoutcomesofthetechnologicaltransitionarenotpre-determined.Itishumansthatarebehindthedecisiontoincorporatesuchtechnologiesanditishumansthatneedtoguidethetransitionprocess.Itisourhopethatthisinformationcansupportthedevelopmentofpoliciesneededtomanagethesechangesforthebenefitofcurrentandfuturesocieties.Weintendtousethisbroadglobalstudyasanopeningtomorein-depthanalysesatcountrylevel,withaparticularfocusondevelopingcountries.

09ILOWorkingPaper96

XTextBox1:WhatareGPTs?

GenerativePre-TrainedTransformersbelongtothefamilyofLargeLanguageModels–atypeofMachineLearningmod-elbasedonneuralnetworks.The“generative”partreferstotheirabilitytoproduceoutputofacreativenature,whichinlanguagemodelscantaketheformofsentences,paragraphs,orentiretextstructures,withcharacteristicsoftenun-distinguishablefromthatproducedbyhumans.“Pre-trained”referstotheinitialtrainingonalargecorpusoftextdata,typicallythroughunsupervisedorself-supervisedlearning,duringwhichthemodellearnsaboutthetextstructurebytemporarilymaskingpartofthecontentandtryingtominimizeerrorsinthepredictionofthemaskedwords.Followingpre-training,suchmodelsarefurtherfine-tunedwiththeuseoflabelleddataandso-called“reinforcementlearning”,makingthemmoresuitableforspecifictasks.Thispartoftrainingisoftenperceivedasaspecializedjob,executedbyahandfuloftechnicalexperts.Inreality,itislabourintensiveandinvolvesmanyinvisiblecontributors(Dzieza2023).Itsprerequisiteistheproductionofvastamountsoflabelleddata,typicallydonebyworkersoncrowdsourcingplatforms.“Transformers”refertotheunderlyingmodelarchitecture,whichusesnumerousmechanisms,suchasattentionandself-attentionframeworks,todevelopweightsrelatedtotheimportanceoftextelements,suchaswordsinasentence,whicharesubsequentlyusedforpredictions(Vaswanietal.2017).

WhileGPTspecificallyreferstomodelsdevelopedbyOpenAI(GPT-1,2,3and4),thistypeofarchitectureisusedbymanymorelanguagemodelsalreadyavailablecommercially.ThelaunchofChatGPTon30November2022madeGPTsmorepopularamongthepublic,asitmadeitpossibleforindividualswithnoprogrammingknowledgetointeractwithGPT-3(andeventuallyGPT-4)throughachatbotfunctionwithahuman-liketone.Forresearchpurposesandmorecom-plexapplications,suchlanguagemodelsaretypicallymorepowerfulwhenusedthroughanApplicationProgrammingInterface(API).AnAPIisadeveloperaccesspointthatreliesonaquery-responseprotocolwiththeuseofprogrammingsoftware.Inourcase,werelyonaPythonscriptbasedonOpenAIlibrary,designedtoconnecttoGPT-4model,provideafine-tunedpromptandreceivearesponse,whichissubsequentlystoredinadatabaseonourserver.ThisenablesbulkprocessingoflargenumbersofrequestsandreliesontheGPT-4modelwithmoreparametersthanwhatisaccessiblethroughthepublicChatfunction.

10ILOWorkingPaper96

X1MethodsandData

Therearetwoprincipalapproachestotheanalysisofautomationofoccupations(GeorgieffandHyee2021).Thefirstistousedataonjobvacanciestounderstandhowdemandforspecificskillsevolvesovertime.Moststudiesusingthisapproachharnessdatafromonlinerecruitmentplat-forms(CammeraatandSquicciarini2021;Acemogluetal.2022)tomeasurethefrequencyofref-erencestoAI(ortoanyothertechnologyofinterest)inthetextofthejobdescription.Theseref-erencesarethenusedasaproxyforthedemandforspecificskillsand,byitsextension,aproxyfortherateoftechnologicaladoptionattheenterpriselevel.Thisapproachworkswellincoun-trieswithahighonlinepresenceinrecruitment,thoughitdoesnotalwayscapturetheindus-triesaffectedasaresultofsubcontracting.Theapproach,however,islesswellsuitedforaglobalstudycoveringcountrieswithlessonlinepresence,asmostvacanciesarenotadvertisedonon-lineplatformsbutrecruitedthroughothermeansofcommunication(GeorgieffandHyee2021).

Thesecondapproachistofocusonoccupationalstructures,withtheideaofestimatingtheau-tomationpotentialoftasksorskillsthatmakeupagivenjob.Theadvantageofthismethodisthatsuchoccupationalclassificationscaneasilybelinkedtoofficiallabourmarketstatistics,whichisofparticularimportanceforunderstandingglobal,regionalandincome-baseddiffer-entials.Thisstrandofliteratureisrich,butfrequentlymisunderstood,especiallywhenitcomestocommunicatingitsfindingstothepublic,asmediainterpretationstendtoblurthedistinc-tionbetweenautomationpotentialandactualdeploymentintheworkplace.Forexample,FreyandOsborne’s(2013,2017)influentialstudyhasbeencitedover12,000times,oftenfordiffer-enttypesofdoomsdaypronouncements,eventhoughtheauthorswereclearaboutthedistinc-tionbetweenpotentialandpredictedeffects.Arangeofstudiesfollowthisresearchtradition,attemptingtocalculatedifferenttypesofoccupationalautomationscoresinOECDcountries(Brynjolfsson,Mitchell,andRock2018;Felten,Raj,andSeamans2018;Felten,Raj,andSeamans2019;AcemogluandRestrepo2020;FossenandSorgner2022)orevencombiningoccupationalandjobpostingdata(GeorgieffandHyee2021).Someauthorshavealsotakenupthechallengeofproducingbetterestimatesfordevelopingcountries(BalliesterandElsheikhi2018),oftenbytryingtolinkdetailedoccupationaldataand

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論