廣東高考數(shù)真題匯編立體幾何_第1頁(yè)
廣東高考數(shù)真題匯編立體幾何_第2頁(yè)
廣東高考數(shù)真題匯編立體幾何_第3頁(yè)
廣東高考數(shù)真題匯編立體幾何_第4頁(yè)
廣東高考數(shù)真題匯編立體幾何_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第2頁(yè)共7頁(yè)廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線(xiàn)稱(chēng)為它的對(duì)角線(xiàn),那么一個(gè)正五棱柱對(duì)角線(xiàn)的條數(shù)共有() A、20 B、15C、12 D、101解答:解:由題意正五棱柱對(duì)角線(xiàn)一定為上底面的一個(gè)頂點(diǎn)和下底面的一個(gè)頂點(diǎn)的連線(xiàn),因?yàn)椴煌谌魏蝹?cè)面內(nèi),故從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線(xiàn)有2條.正五棱柱對(duì)角線(xiàn)的條數(shù)共有2×5=10條.故選D2、(2011?廣東文數(shù))如圖,某幾何體的正視圖(主視圖),側(cè)視圖(左視圖)和俯視圖分別是等邊三角形,等腰三角形和菱形,則該幾何體體積為() A、 B、4C、 D、23、(2011?廣東理數(shù))如某幾何體的正視圖(主視圖)是平行四邊形,側(cè)視圖(左視圖)和俯視圖都是矩形,則幾何體的體積為() A、6 B、9C、12 D、185.(2009廣東文科)給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線(xiàn),那么這兩個(gè)平面相互垂直;③垂直于同一直線(xiàn)的兩條直線(xiàn)相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直.其中,為真命題的是A.①和②B.②和③C.③和④D.②和④6.(2008廣東文數(shù))將正三棱柱截去三個(gè)角(如圖1所示,分別是三邊的中點(diǎn))得到幾何體如圖2,則該幾何體按圖2所示方向的側(cè)視圖(或稱(chēng)左視圖)為()EEFDIAHGBCEFDABC側(cè)視圖1圖2BEA.BEB.BEC.BED.7.(2007廣東文數(shù))若是互不相同的空間直線(xiàn),是不重合的平面,則下列命題中為真命題的是()lαβmA.若,則 B.若,則lαβmC.若,則 D.若,則8、(2006廣東)給出以下四個(gè)命題①如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的一個(gè)平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行;②如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面;③如果兩條直線(xiàn)都平行于一個(gè)平面,那么這兩條直線(xiàn)互相平行;④如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么些兩個(gè)平面互相垂直.其中真命題的個(gè)數(shù)是∴∴△PAC是以∠PAC為直角的直角三角形,同理可證,△PAB是以∠PAB為直角的直角三角形,△PCB是以∠PCB為直角的直角三角形.在中,∵∴∴又∵∴(II)解法一:由(I)知PB⊥CE,PA⊥平面ABC∴AB是PB在平面ABC上的射影,故AB⊥CE∴CE⊥平面PAB,而EF平面PAB,ACBPFE∴EF⊥EC,故∠ACBPFE∵∴,∴二面角B—CE—F的大小為.解法二:如圖,以C點(diǎn)的原點(diǎn),CB、CA為x、y軸,建立空間直角坐標(biāo)系C-xyz,則,,,,∵為平面ABC的法向量,為平面ABC的法向量,∴,∴二面角B—CE—F的大小為.20(2004廣東)如右下圖,在長(zhǎng)方體中,已知,分別是線(xiàn)段上的點(diǎn),且(I)求二面角的正切值(II)求直線(xiàn)與所成角的余弦值20.解:(I)以A為原點(diǎn),分別為x軸,y軸,z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2)于是,設(shè)向量與平面C1DE垂直,則有(II)設(shè)EC1與FD1所成角為β,則21、(2011?廣東文數(shù))如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過(guò)軸的平面切開(kāi)后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).(1)證明:O1′,A′,O2,B四點(diǎn)共面;(2)設(shè)G為AA′中點(diǎn),延長(zhǎng)A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G考點(diǎn):直線(xiàn)與平面垂直的判定;棱柱的結(jié)構(gòu)特征;平面的基本性質(zhì)及推論。專(zhuān)題:證明題;綜合題。分析:(1)要證O1′,A′,O2,B四點(diǎn)共面,即可證四邊形BO2A′O1′為平面圖形,根據(jù)A′O1′與B′O2′在未平移時(shí)屬于同一條直徑知道A′O1′∥B′O2′即BO2∥A′O1′再根據(jù)BO2=A′O1′=1即可得到四邊形BO2A′O1′是平行四邊形,則證.(2)建立空間直角坐標(biāo)系,要證BO2′⊥平面H′B′G只需證,,根據(jù)坐標(biāo)運(yùn)算算出?,的值均為0即可解答:證明:(1)∵B′,B分別是中點(diǎn)∴BO2∥B′O2′∵A′O1′與B′O2′在未平移時(shí)屬于同一條直徑∴A′O1′∥B′O2′∴BO2∥A′O1′∵BO2=A′O1′=1∴四邊形BO2A′O1′是平行四邊形即O1′,A′,O2,B四點(diǎn)共面(2)以D為原點(diǎn),以向量DE所在的直線(xiàn)為X軸,以向量DD′所在的直線(xiàn)為Z軸,建立如圖空間直角坐標(biāo)系,則B(1,1,0),O2′(0,1,2),H′(1,﹣1,2),A(﹣1,﹣1,0),G(﹣1,﹣1,1),B′(1,1,2)則=(﹣1,0,2),=(﹣2,﹣2,﹣1),=(0,﹣2,0)∵?=0,=0∴BO2′⊥B′G,BO2′⊥B′H′即,∵B′H′∩B′G=B′,B′H′、B′G?面H′GB′∴BO2′⊥平面H′B′G點(diǎn)評(píng):本題考查了直線(xiàn)與平面垂直的判定,棱柱的結(jié)構(gòu)特征,平面的基本性質(zhì)及推論以及空間向量的基本知識(shí),屬于中檔題.22、(2011?廣東理數(shù))如圖,在錐體P﹣ABCD中,ABCD是邊長(zhǎng)為1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F(xiàn)分別是BC,PC的中點(diǎn)(1)證明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.考點(diǎn):與二面角有關(guān)的立體幾何綜合題;二面角的平面角及求法。專(zhuān)題:常規(guī)題型;綜合題。分析:(1)利用線(xiàn)面垂直的判定定理進(jìn)行證明是解決本題的關(guān)鍵,在平面DEF中找兩條相交直線(xiàn)與AD垂直,利用60°角菱形的特征可以發(fā)現(xiàn)AD⊥DE,通過(guò)取出AD的中點(diǎn)構(gòu)造一個(gè)平面可以證明AD⊥EF;(2)利用(1)中的結(jié)論找到二面角P﹣AD﹣B的平面角是解決本題的關(guān)鍵,求角往往要利用三角形中的余弦定理.解答:解:(1)取AD的中點(diǎn)G,連接PG,BG,在△ABG中,根據(jù)余弦定理可以算出BG=,發(fā)現(xiàn)AG2+BG2=AB2,可以得出AD⊥BG,又DE∥BG∴DE⊥AD,又PA=PD,可以得出AD⊥PG,而PG∩BG=G,∴AD⊥平面PBG,而PB?平面PBG,∴AD⊥PB,又PB∥EF,∴AD⊥EF.又EF∩DE=E,∴AD⊥平面DEF.(2)由(1)知,AD⊥平面PBG,所以∠PGB為二面角P﹣AD﹣B的平面角,在△PBG中,PG=,BG=,PB=2,由余弦定理得cos∠PGB=,因此二面角P﹣AD﹣B的余弦值為.點(diǎn)評(píng):本題考查立體幾何中基本的線(xiàn)面關(guān)系,考查線(xiàn)面垂直的判定方法,考查二面角的求法,訓(xùn)練了學(xué)生基本的空間想象能力,考查學(xué)生的轉(zhuǎn)化與化歸思想,解三角形的基本知識(shí)和學(xué)生的運(yùn)算能力,屬于基本的立體幾何題.

1.位置關(guān)系:1)兩條異面直線(xiàn)相互垂直:○1證明兩條異面直線(xiàn)所成角為90o;○2證明兩條異面直線(xiàn)的方向量相互垂直。2)直線(xiàn)和平面相互平行:○1證明直線(xiàn)和這個(gè)平面內(nèi)的一條直線(xiàn)相互平行;○2證明這條直線(xiàn)的方向向量和這個(gè)平面內(nèi)的一個(gè)向量相互平行;○3證明這條直線(xiàn)的方向向量和這個(gè)平面的法向量相互垂直。3)直線(xiàn)和平面垂直:○1證明直線(xiàn)和平面內(nèi)兩條相交直線(xiàn)都垂直,○2證明直線(xiàn)的方向量與這個(gè)平面內(nèi)不共線(xiàn)的兩個(gè)向量都垂直;○3證明直線(xiàn)的方向量與這個(gè)平面的法向量相互平行。4)平面和平面相互垂直:○1證明這兩個(gè)平面所成二面角的平面角為90o;○2證明一個(gè)平面內(nèi)的一條直線(xiàn)垂直于另外一個(gè)平面;○3證明兩個(gè)平面的法向量相互垂直。2.求距離:求距離的重點(diǎn)在點(diǎn)到平面的距離,直線(xiàn)到平面的距離和兩個(gè)平面的距離可以轉(zhuǎn)化成點(diǎn)到平面的距離,一個(gè)點(diǎn)到平面的距離也可以轉(zhuǎn)化成另外一個(gè)點(diǎn)到這個(gè)平面的距離。1)兩

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論