下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Word第第頁(yè)關(guān)于初中數(shù)學(xué)知識(shí)的集錦各位喜愛(ài)數(shù)學(xué)的學(xué)校同學(xué)們,的我通過(guò)仔細(xì)分析和具體整合,為大家?guī)?lái)了豐富養(yǎng)分的數(shù)學(xué)學(xué)問(wèn)大餐之學(xué)校學(xué)問(wèn)點(diǎn)學(xué)習(xí)口訣,請(qǐng)同學(xué)們仔細(xì)記憶,做好筆記啦。更多更全的學(xué)校學(xué)問(wèn)資訊盡在。
圓的證明歌:
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘互相有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。
同弧圓周角相等,證題用它最多見(jiàn),圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對(duì)角互補(bǔ)記心間,外角等于內(nèi)對(duì)角,四邊形定內(nèi)接圓;
直角相對(duì)或共弦,試試加個(gè)幫助圓;
若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;
要想證明圓切線,垂直半徑過(guò)外端,直線與圓有共點(diǎn),證垂直來(lái)半徑連,直線與圓未給點(diǎn),需證半徑作垂線;
四邊形有內(nèi)切圓,對(duì)邊和等是條件;假如遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),盼望同學(xué)們很好的把握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條相互垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③相互垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般狀況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必需相同。
③象限的規(guī)定:右上為第一象限、左上為其次象限、左下為第三象限、右下為第四象限。
信任上面對(duì)平面直角坐標(biāo)系學(xué)問(wèn)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的把握了吧,盼望同學(xué)們都能考試勝利。
學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上相互垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成學(xué)問(wèn)的講解學(xué)習(xí),盼望同學(xué)們對(duì)上面的內(nèi)容都能很好的把握,同學(xué)們仔細(xì)學(xué)習(xí)吧。
學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):點(diǎn)的坐標(biāo)的'性質(zhì)
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)〔a,b〕叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
盼望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)學(xué)問(wèn)講解學(xué)習(xí),同學(xué)們都能很好的把握,信任同學(xué)們會(huì)在考試中取得優(yōu)異成果的。
學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的學(xué)問(wèn)講解。
因式分解的一般步驟
假如多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采納分組分解法,最終運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
留意:因式分解肯定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)當(dāng)是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必需是幾個(gè)整式的積的形式。
學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的學(xué)問(wèn)講解,盼望同學(xué)們仔細(xì)學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必需是整式②結(jié)果必需是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式留意;
①不準(zhǔn)丟字母
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024個(gè)人抵押借款合同模板
- 2024股權(quán)投資合同范本范文
- 藥物性低血壓的護(hù)理
- 蘇州科技大學(xué)天平學(xué)院《統(tǒng)計(jì)學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024設(shè)備抵押借款合同范例
- 糖尿病的護(hù)理及注意事項(xiàng)
- 企業(yè)復(fù)工防疫十項(xiàng)導(dǎo)則考核試卷
- 城市軌道交通的智慧控制與自動(dòng)化運(yùn)行技術(shù)研究考核試卷
- 醫(yī)院年終總結(jié)及計(jì)劃
- 2024自然人股權(quán)轉(zhuǎn)讓合同范本
- 習(xí)近平總書(shū)記關(guān)于教育的重要論述研究學(xué)習(xí)通章節(jié)答案期末考試題庫(kù)2023年
- 重癥急性胰腺炎ppt恢復(fù)課件
- 2022江蘇省沿海開(kāi)發(fā)集團(tuán)限公司招聘23人上岸筆試歷年難、易錯(cuò)點(diǎn)考題附帶參考答案與詳解
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院6S管理內(nèi)容和要求
- 數(shù)學(xué)教育概論 第3版
- 2023年中考英語(yǔ)寫(xiě)作高級(jí)替換詞
- 工程借用資質(zhì)免責(zé)協(xié)議書(shū)
- 2023年北京大學(xué)強(qiáng)基計(jì)劃測(cè)試數(shù)學(xué)真題試卷
- 如何做好研究生導(dǎo)師
- 礦泉水廠建設(shè)項(xiàng)目實(shí)施方案
- 狼人殺上帝記錄表
評(píng)論
0/150
提交評(píng)論