![數(shù)據(jù)挖掘之聚類分析課件_第1頁](http://file4.renrendoc.com/view/b8e5744566521f4abe5178982602e183/b8e5744566521f4abe5178982602e1831.gif)
![數(shù)據(jù)挖掘之聚類分析課件_第2頁](http://file4.renrendoc.com/view/b8e5744566521f4abe5178982602e183/b8e5744566521f4abe5178982602e1832.gif)
![數(shù)據(jù)挖掘之聚類分析課件_第3頁](http://file4.renrendoc.com/view/b8e5744566521f4abe5178982602e183/b8e5744566521f4abe5178982602e1833.gif)
![數(shù)據(jù)挖掘之聚類分析課件_第4頁](http://file4.renrendoc.com/view/b8e5744566521f4abe5178982602e183/b8e5744566521f4abe5178982602e1834.gif)
![數(shù)據(jù)挖掘之聚類分析課件_第5頁](http://file4.renrendoc.com/view/b8e5744566521f4abe5178982602e183/b8e5744566521f4abe5178982602e1835.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
ClusteringClusteringOverviewPartitioningMethodsK-MeansSequentialLeaderModelBasedMethodsDensityBasedMethodsHierarchicalMethods2OverviewPartitioningMethods2Whatisclusteranalysis?FindinggroupsofobjectsObjectssimilartoeachotherareinthesamegroup.Objectsaredifferentfromthoseinothergroups.UnsupervisedLearningNolabelsDatadriven3Whatisclusteranalysis?FindiClustersInter-ClusterIntra-Cluster4ClustersInter-ClusterIntra-CluClusters5Clusters5ApplicationsofClusteringMarketingFindinggroupsofcustomerswithsimilarbehaviours.BiologyFindinggroupsofanimalsorplantswithsimilarfeatures.BioinformaticsClusteringmicroarraydata,genesandsequences.EarthquakeStudiesClusteringobservedearthquakeepicenterstoidentifydangerouszones.WWWClusteringweblogdatatodiscovergroupsofsimilaraccesspatterns.SocialNetworksDiscoveringgroupsofindividualswithclosefriendshipsinternally.6ApplicationsofClusteringMarkEarthquakes7Earthquakes7ImageSegmentation8ImageSegmentation8TheBigPicture9TheBigPicture9RequirementsScalabilityAbilitytodealwithdifferenttypesofattributesAbilitytodiscoverclusterswitharbitraryshapeMinimumrequirementsfordomainknowledgeAbilitytodealwithnoiseandoutliersInsensitivitytoorderofinputrecordsIncorporationofuser-definedconstraintsInterpretabilityandusability10RequirementsScalability10PracticalConsiderationsScalingmatters!11PracticalConsiderationsScalinNormalizationorNot?12NormalizationorNot?121313EvaluationVS.14EvaluationVS.14Evaluation15Evaluation15SilhouetteAmethodofinterpretationandvalidationofclustersofdata.Asuccinctgraphicalrepresentationofhowwelleachdatapointlieswithinitsclustercomparedtootherclusters.a(i):averagedissimilarityofiwithallotherpointsinthesameclusterb(i):thelowestaveragedissimilarityofitootherclusters16SilhouetteAmethodofinterpreSilhouette17Silhouette17K-Means18K-Means18K-Means19K-Means19K-Means20K-Means20K-MeansDeterminethevalueofK.ChooseKclustercentresrandomly.Eachdatapointisassignedtoitsclosestcentroid.Usethemeanofeachclustertoupdateeachcentroid.Repeatuntilnomorenewassignment.ReturntheKcentroids.ReferenceJ.MacQueen(1967):"SomeMethodsforClassificationandAnalysisofMultivariateObservations",Proceedingsofthe5thBerkeleySymposiumonMathematicalStatisticsandProbability,vol.1,pp.281-297.21K-MeansDeterminethevalueofCommentsonK-MeansProsSimpleandworkswellforregulardisjointclusters.Convergesrelativelyfast.RelativelyefficientandscalableO(t?k?n)t:iteration;k:numberofcentroids;n:numberofdatapointsConsNeedtospecifythevalueofKinadvance.Difficultanddomainknowledgemayhelp.Mayconvergetolocaloptima.Inpractice,trydifferentinitialcentroids.Maybesensitivetonoisydataandoutliers.Meanofdatapoints…NotsuitableforclustersofNon-convexshapes22CommentsonK-MeansPros22TheInfluenceofInitialCentroids23TheInfluenceofInitialCentrTheInfluenceofInitialCentroids24TheInfluenceofInitialCentrSequentialLeaderClusteringAveryefficientclusteringalgorithm.NoiterationAsinglepassofthedataNoneedtospecifyKinadvance.Chooseaclusterthresholdvalue.Foreverynewdatapoint:Computethedistancebetweenthenewdatapointandeverycluster'scentre.Iftheminimumdistanceissmallerthanthechosenthreshold,assignthenewdatapointtothecorrespondingclusterandre-computeclustercentre.Otherwise,createanewclusterwiththenewdatapointasitscentre.Clusteringresultsmaybeinfluencedbythesequenceofdatapoints.25SequentialLeaderClusteringA2626GaussianMixture27GaussianMixture27ClusteringbyMixtureModels28ClusteringbyMixtureModels28K-MeansRevisited
modelparameterslatentparameters29K-MeansRevisited
modelparamExpectationMaximization30ExpectationMaximization30
31
31EM:GaussianMixture32EM:GaussianMixture323333DensityBasedMethodsGenerateclustersofarbitraryshapes.Robustagainstnoise.NoKvaluerequiredinadvance.Somewhatsimilartohumanvision.34DensityBasedMethodsGenerateDBSCANDensity-BasedSpatialClusteringofApplicationswithNoiseDensity:numberofpointswithinaspecifiedradiusCorePoint:pointswithhighdensityBorderPoint:pointswithlowdensitybutintheneighbourhoodofacorepointNoisePoint:neitheracorepointnoraborderpointCorePointNoisePointBorderPoint35DBSCANDensity-BasedSpatialClDBSCANpqdirectlydensityreachablepqdensityreachableoqpdensityconnected36DBSCANpqdirectlydensityreachDBSCANAclusterisdefinedasthemaximalsetofdensityconnectedpoints.StartfromarandomlyselectedunseenpointP.IfPisacorepoint,buildaclusterbygraduallyaddingallpointsthataredensityreachabletothecurrentpointset.Noisepointsarediscarded(unlabelled).37DBSCANAclusterisdefinedasHierarchicalClusteringProduceasetofnestedtree-likeclusters.Canbevisualizedasadendrogram.Clusteringisobtainedbycuttingatdesiredlevel.NoneedtospecifyKinadvance.Maycorrespondtomeaningfultaxonomies.38HierarchicalClusteringProduceAgglomerativeMethodsBottom-upMethodAssigneachdatapointtoacluster.Calculatetheproximitymatrix.Mergethepairofclosestclusters.Repeatuntilonlyasingleclusterremains.Howtocalculatethedistancebetweenclusters?SingleLinkMinimumdistancebetweenpointsCompleteLinkMaximumdistancebetweenpoints39AgglomerativeMethodsBottom-upExample
BAFIMINARMTOBA0662877255412996FI6620295468268400MI8772950754564138NA2554687540219869RM4122685642190669TO9964001388696690SingleLink40Example
BAFIMINARMTOBA06628772Example
BAFIMI/TONARMBA0662877255412FI6620295468268MI/TO8772950754564NA2554687540219RM412268564219
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 心靈相約與健康同行演講稿三篇
- 2025年四川職教高考《職業(yè)適應(yīng)性測試》考前沖刺模擬試題庫(附答案)
- 2025年“雄鷹杯”小動物醫(yī)師技能大賽備考試題庫(含答案)
- 錯誤記憶課件
- 【語文試卷+答案】2024-2025學(xué)年泉州高二上期末質(zhì)檢
- 專題04 世界古代史(易錯選擇題50道)
- 山東省德州市高三3月份高考模擬考試語文試題(含答案)
- 中班幼兒趣味親子活動策劃方案五篇
- 電子商務(wù)采購合同范本
- 物品抵押借款合同標(biāo)準(zhǔn)范本
- 2025年銷售部年度工作計劃
- 2024年蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- ESG表現(xiàn)對企業(yè)財務(wù)績效的影響研究
- 車間空調(diào)崗位送風(fēng)方案
- 使用錯誤評估報告(可用性工程)模版
- 初一年級班主任上學(xué)期工作總結(jié)
- 2023-2024年同等學(xué)力經(jīng)濟學(xué)綜合真題及參考答案
- 農(nóng)村集體土地使用權(quán)轉(zhuǎn)讓協(xié)議
- 課件四露天礦山安全知識培訓(xùn)
- 2024年高考全國甲卷英語試卷(含答案)
- 職業(yè)技術(shù)學(xué)院《裝配式混凝土構(gòu)件生產(chǎn)與管理》課程標(biāo)準(zhǔn)
評論
0/150
提交評論