數(shù)據(jù)挖掘之聚類分析課件_第1頁
數(shù)據(jù)挖掘之聚類分析課件_第2頁
數(shù)據(jù)挖掘之聚類分析課件_第3頁
數(shù)據(jù)挖掘之聚類分析課件_第4頁
數(shù)據(jù)挖掘之聚類分析課件_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

ClusteringClusteringOverviewPartitioningMethodsK-MeansSequentialLeaderModelBasedMethodsDensityBasedMethodsHierarchicalMethods2OverviewPartitioningMethods2Whatisclusteranalysis?FindinggroupsofobjectsObjectssimilartoeachotherareinthesamegroup.Objectsaredifferentfromthoseinothergroups.UnsupervisedLearningNolabelsDatadriven3Whatisclusteranalysis?FindiClustersInter-ClusterIntra-Cluster4ClustersInter-ClusterIntra-CluClusters5Clusters5ApplicationsofClusteringMarketingFindinggroupsofcustomerswithsimilarbehaviours.BiologyFindinggroupsofanimalsorplantswithsimilarfeatures.BioinformaticsClusteringmicroarraydata,genesandsequences.EarthquakeStudiesClusteringobservedearthquakeepicenterstoidentifydangerouszones.WWWClusteringweblogdatatodiscovergroupsofsimilaraccesspatterns.SocialNetworksDiscoveringgroupsofindividualswithclosefriendshipsinternally.6ApplicationsofClusteringMarkEarthquakes7Earthquakes7ImageSegmentation8ImageSegmentation8TheBigPicture9TheBigPicture9RequirementsScalabilityAbilitytodealwithdifferenttypesofattributesAbilitytodiscoverclusterswitharbitraryshapeMinimumrequirementsfordomainknowledgeAbilitytodealwithnoiseandoutliersInsensitivitytoorderofinputrecordsIncorporationofuser-definedconstraintsInterpretabilityandusability10RequirementsScalability10PracticalConsiderationsScalingmatters!11PracticalConsiderationsScalinNormalizationorNot?12NormalizationorNot?121313EvaluationVS.14EvaluationVS.14Evaluation15Evaluation15SilhouetteAmethodofinterpretationandvalidationofclustersofdata.Asuccinctgraphicalrepresentationofhowwelleachdatapointlieswithinitsclustercomparedtootherclusters.a(i):averagedissimilarityofiwithallotherpointsinthesameclusterb(i):thelowestaveragedissimilarityofitootherclusters16SilhouetteAmethodofinterpreSilhouette17Silhouette17K-Means18K-Means18K-Means19K-Means19K-Means20K-Means20K-MeansDeterminethevalueofK.ChooseKclustercentresrandomly.Eachdatapointisassignedtoitsclosestcentroid.Usethemeanofeachclustertoupdateeachcentroid.Repeatuntilnomorenewassignment.ReturntheKcentroids.ReferenceJ.MacQueen(1967):"SomeMethodsforClassificationandAnalysisofMultivariateObservations",Proceedingsofthe5thBerkeleySymposiumonMathematicalStatisticsandProbability,vol.1,pp.281-297.21K-MeansDeterminethevalueofCommentsonK-MeansProsSimpleandworkswellforregulardisjointclusters.Convergesrelativelyfast.RelativelyefficientandscalableO(t?k?n)t:iteration;k:numberofcentroids;n:numberofdatapointsConsNeedtospecifythevalueofKinadvance.Difficultanddomainknowledgemayhelp.Mayconvergetolocaloptima.Inpractice,trydifferentinitialcentroids.Maybesensitivetonoisydataandoutliers.Meanofdatapoints…NotsuitableforclustersofNon-convexshapes22CommentsonK-MeansPros22TheInfluenceofInitialCentroids23TheInfluenceofInitialCentrTheInfluenceofInitialCentroids24TheInfluenceofInitialCentrSequentialLeaderClusteringAveryefficientclusteringalgorithm.NoiterationAsinglepassofthedataNoneedtospecifyKinadvance.Chooseaclusterthresholdvalue.Foreverynewdatapoint:Computethedistancebetweenthenewdatapointandeverycluster'scentre.Iftheminimumdistanceissmallerthanthechosenthreshold,assignthenewdatapointtothecorrespondingclusterandre-computeclustercentre.Otherwise,createanewclusterwiththenewdatapointasitscentre.Clusteringresultsmaybeinfluencedbythesequenceofdatapoints.25SequentialLeaderClusteringA2626GaussianMixture27GaussianMixture27ClusteringbyMixtureModels28ClusteringbyMixtureModels28K-MeansRevisited

modelparameterslatentparameters29K-MeansRevisited

modelparamExpectationMaximization30ExpectationMaximization30

31

31EM:GaussianMixture32EM:GaussianMixture323333DensityBasedMethodsGenerateclustersofarbitraryshapes.Robustagainstnoise.NoKvaluerequiredinadvance.Somewhatsimilartohumanvision.34DensityBasedMethodsGenerateDBSCANDensity-BasedSpatialClusteringofApplicationswithNoiseDensity:numberofpointswithinaspecifiedradiusCorePoint:pointswithhighdensityBorderPoint:pointswithlowdensitybutintheneighbourhoodofacorepointNoisePoint:neitheracorepointnoraborderpointCorePointNoisePointBorderPoint35DBSCANDensity-BasedSpatialClDBSCANpqdirectlydensityreachablepqdensityreachableoqpdensityconnected36DBSCANpqdirectlydensityreachDBSCANAclusterisdefinedasthemaximalsetofdensityconnectedpoints.StartfromarandomlyselectedunseenpointP.IfPisacorepoint,buildaclusterbygraduallyaddingallpointsthataredensityreachabletothecurrentpointset.Noisepointsarediscarded(unlabelled).37DBSCANAclusterisdefinedasHierarchicalClusteringProduceasetofnestedtree-likeclusters.Canbevisualizedasadendrogram.Clusteringisobtainedbycuttingatdesiredlevel.NoneedtospecifyKinadvance.Maycorrespondtomeaningfultaxonomies.38HierarchicalClusteringProduceAgglomerativeMethodsBottom-upMethodAssigneachdatapointtoacluster.Calculatetheproximitymatrix.Mergethepairofclosestclusters.Repeatuntilonlyasingleclusterremains.Howtocalculatethedistancebetweenclusters?SingleLinkMinimumdistancebetweenpointsCompleteLinkMaximumdistancebetweenpoints39AgglomerativeMethodsBottom-upExample

BAFIMINARMTOBA0662877255412996FI6620295468268400MI8772950754564138NA2554687540219869RM4122685642190669TO9964001388696690SingleLink40Example

BAFIMINARMTOBA06628772Example

BAFIMI/TONARMBA0662877255412FI6620295468268MI/TO8772950754564NA2554687540219RM412268564219

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論