版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第關(guān)于數(shù)學(xué)必修一必修二知識(shí)點(diǎn)總結(jié)3篇關(guān)于數(shù)學(xué)必修一必修二知識(shí)點(diǎn)總結(jié)3篇
知識(shí)經(jīng)濟(jì)的發(fā)展需要強(qiáng)有力的政策和資源支持,包括科技創(chuàng)新和人才培養(yǎng)等方面。知識(shí)創(chuàng)新的驅(qū)動(dòng)力可以來(lái)自多方面,例如市場(chǎng)需求、政策支持、學(xué)術(shù)領(lǐng)域等。下面就讓小編給大家?guī)?lái)數(shù)學(xué)必修一必修二知識(shí)點(diǎn)總結(jié),希望大家喜歡!
數(shù)學(xué)必修一必修二知識(shí)點(diǎn)總結(jié)篇1
1.數(shù)列的有關(guān)概念:
(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。
(2)通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來(lái)表示,這個(gè)公式即是該數(shù)列的通項(xiàng)公式。如:。
(3)遞推公式:已知數(shù)列{an}的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與他的前一項(xiàng)an-1(或前幾項(xiàng))可以用一個(gè)公式來(lái)表示,這個(gè)公式即是該數(shù)列的遞推公式。
如:
2.數(shù)列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。
(3)解析法:用通項(xiàng)公式表示。(4)遞推法:用遞推公式表示。
3.數(shù)列的分類(lèi):
4.數(shù)列{an}及前n項(xiàng)和之間的關(guān)系:
5.等差數(shù)列與等比數(shù)列對(duì)比小結(jié):
等差數(shù)列等比數(shù)列
一、定義
二、公式1.
2.
1.
2.
三、性質(zhì)1.,
稱(chēng)為與的等差中項(xiàng)
2.若(、、、),則
3.,,成等差數(shù)列
1.,
稱(chēng)為與的等比中項(xiàng)
2.若(、、、),則
3.,,成等比數(shù)列
(三)不等式
1、;;.
2、不等式的性質(zhì):①;②;③;
④,;⑤;
⑥;⑦;
⑧.
小結(jié):代數(shù)式的大小比較或證明通常用作差比較法:作差、化積(商)、判斷、結(jié)論。
在字母比較的選擇或填空題中,常采用特值法驗(yàn)證。
3、一元二次不等式解法:
(1)化成標(biāo)準(zhǔn)式:;(2)求出對(duì)應(yīng)的一元二次方程的根;
(3)畫(huà)出對(duì)應(yīng)的二次函數(shù)的圖象;(4)根據(jù)不等號(hào)方向取出相應(yīng)的解集。
數(shù)學(xué)必修一必修二知識(shí)點(diǎn)總結(jié)篇2
解三角形
1、三角形三角關(guān)系:A+B+C=180°;C=180°-(A+B);
2、三角形三邊關(guān)系:a+ba-b3、三角形中的基本關(guān)系:sin(AB)sinC,cos(AB)cosC,tan(AB)tanC,ABCABCABCcos,cossin,tancot222222
4、正弦定理:在C中,a、b、c分別為角、、C的對(duì)邊,R為C的外abc2R.接圓的半徑,則有sinsinsinCsin
5、正弦定理的變形公式:
①化角為邊:a2Rsin,b2Rsin,c2RsinC;abc,sin,sinC;2R2R2R
abcabc③a:b:csin:sin:sinC;④.sinsinsinCsinsinsinC②化邊為角:sin6、兩類(lèi)正弦定理解三角形的問(wèn)題:
①已知兩角和任意一邊,求其他的兩邊及一角.
②已知兩角和其中一邊的對(duì)角,求其他邊角.(對(duì)于已知兩邊和其中一邊所對(duì)的角的題型要注意解的情況(一解、兩解、三解))
7、余弦定理:在C中,有abc2bccos,bac2accos,222222c2a2b22abcosC.
b2c2a2a2c2b2a2b2c2
8、余弦定理的推論:cos,cos,cosC.2bc2ac2ab(余弦定理主要解決的問(wèn)題:1.已知兩邊和夾角,求其余的量。2.已知三邊求角)
9、余弦定理主要解決的問(wèn)題:①已知兩邊和夾角,求其余的量。②已知三邊求角)
10、如何判斷三角形的形狀:判定三角形形狀時(shí),可利用正余弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,統(tǒng)一成邊的形式或角的形式設(shè)a、b、c是C的角、、C的對(duì)邊,則:
①若abc,則C90;②若abc,則C90;
③若abc,則C90.
數(shù)學(xué)必修一必修二知識(shí)點(diǎn)總結(jié)篇3
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類(lèi):
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp、空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp、空間向量法
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;
(2)沒(méi)有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
高中學(xué)數(shù)學(xué)的技巧
1、重視課堂的學(xué)習(xí)效率
新知識(shí)的接受和數(shù)學(xué)能力的培養(yǎng),主要是在課堂上進(jìn)行,所以要特別重視課堂的學(xué)習(xí)效率,上課時(shí)要緊跟老師的思路,積極開(kāi)展思維,預(yù)測(cè)下面的步驟,比較自己的解題思路與老師所講的有哪些不同。課后要及時(shí)復(fù)習(xí),不留疑點(diǎn),對(duì)不懂的地方要及時(shí)請(qǐng)教老師或同學(xué),切忌不懂將懂,或?qū)⒉欢牡胤教^(guò)。課后還要注重基礎(chǔ)知識(shí)的學(xué)習(xí)和基本技能的培養(yǎng),要多記公式、定理,因?yàn)樗鼈兪菍W(xué)好數(shù)學(xué)的關(guān)鍵和必備條件。
2、多做習(xí)題,養(yǎng)成良好的解題習(xí)慣
要想學(xué)好數(shù)學(xué),多做題是不可避免的。當(dāng)然,多做題并不等于搞題海戰(zhàn)術(shù)。做的題目要有代表性,不能胡子眉毛一把抓,碰到哪道題就做哪道題。有些題適合我們做,而有些題卻超出了我們的能力范圍,做這些題目只能是浪費(fèi)我們寶貴的時(shí)間,不會(huì)達(dá)到任何效果。做的題要難易適中,通過(guò)做些有代表的題目,要力爭(zhēng)能舉一反三。數(shù)學(xué)是一門(mén)邏輯性很強(qiáng)的學(xué)科,需要縝密的思維,解題要有條理,在做題的過(guò)程中學(xué)會(huì)熟練運(yùn)用正確的解題方法,掌握一些基本題型的解題規(guī)律。只有平時(shí)大量的訓(xùn)練,見(jiàn)多了、做多了,自然就熟能生巧,考試的時(shí)候就會(huì)應(yīng)付自如,不至于亂了陣腳。
數(shù)學(xué)必修一知識(shí)點(diǎn)復(fù)習(xí)
一、集合有關(guān)概念
1、集合的含義
2、集合的中元素的三個(gè)特性:
(1)元素的確定性
(2)元素的互異性
(3)元素的無(wú)序性
3、集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:XKb1、Com
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合{xR|x—32},{x|x—32}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類(lèi):
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=—5}
二、集合間的基本關(guān)系
1、“包含”關(guān)系—子集
注意:有兩種可能
(1)A是B的一部分;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA。
2、不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
3、子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北師大版八年級(jí)生物下冊(cè)月考試卷含答案
- 二零二五年度木門(mén)及木飾面定制化生產(chǎn)與安裝服務(wù)合同4篇
- 二零二五版親子閱讀活動(dòng)組織服務(wù)合同4篇
- 2025年航空航天產(chǎn)業(yè)投資入股分紅合同4篇
- 二零二五年度智能家居安裝服務(wù)分包工程勞務(wù)合同4篇
- 2025版木作裝飾清包施工合同示范文本8篇
- 2024版公司車(chē)輛租賃合同
- 二零二五年度路演展示廳綠色環(huán)保設(shè)施租賃合同4篇
- 2025年度高速公路貨運(yùn)聘用貨車(chē)司機(jī)合同樣本4篇
- 二零二五年度農(nóng)藥產(chǎn)業(yè)投資基金合作合同
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷(xiāo)售與銷(xiāo)售目標(biāo)管理制度
- 人教版(2025新版)七年級(jí)下冊(cè)英語(yǔ):寒假課內(nèi)預(yù)習(xí)重點(diǎn)知識(shí)默寫(xiě)練習(xí)
- 2024年食品行業(yè)員工勞動(dòng)合同標(biāo)準(zhǔn)文本
- 全屋整裝售后保修合同模板
- 高中生物學(xué)科學(xué)推理能力測(cè)試
- GB/T 44423-2024近紅外腦功能康復(fù)評(píng)估設(shè)備通用要求
- 2024-2030年中國(guó)減肥行業(yè)市場(chǎng)發(fā)展分析及發(fā)展趨勢(shì)與投資研究報(bào)告
- 運(yùn)動(dòng)技能學(xué)習(xí)
- 2024年中考英語(yǔ)專(zhuān)項(xiàng)復(fù)習(xí):傳統(tǒng)文化的魅力(閱讀理解+完型填空+書(shū)面表達(dá))(含答案)
- 音樂(lè)培訓(xùn)合同與培訓(xùn)機(jī)構(gòu)的合作
評(píng)論
0/150
提交評(píng)論