




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第2講函數(shù)的對(duì)稱(chēng)性與周期性【考點(diǎn)分析】1.函數(shù)的對(duì)稱(chēng)性、周期性是高考命題熱點(diǎn),近兩年新高考都考了一道選擇題,分值5分,知識(shí)點(diǎn)比較靈活,需要全面掌握常見(jiàn)對(duì)稱(chēng)性,周期性的結(jié)論考點(diǎn)一:函數(shù)常見(jiàn)對(duì)稱(chēng)性結(jié)論①若函數(shù)SKIPIF1<0對(duì)于任意的SKIPIF1<0均滿足SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng).②若函數(shù)SKIPIF1<0對(duì)于任意的SKIPIF1<0均滿足SKIPIF1<0則SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng).考點(diǎn)二:函數(shù)常見(jiàn)周期性結(jié)論若函數(shù)對(duì)于任意的SKIPIF1<0都滿足SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的一個(gè)周期,且SKIPIF1<0幾個(gè)常見(jiàn)周期性結(jié)論=1\*GB3①若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.=2\*GB3②若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.=3\*GB3③若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.④若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.⑤若函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0,SKIPIF1<0都對(duì)稱(chēng),則SKIPIF1<0為周期函數(shù)且SKIPIF1<0是它的一個(gè)周期.⑥函數(shù)SKIPIF1<0SKIPIF1<0的圖象關(guān)于兩點(diǎn)SKIPIF1<0、SKIPIF1<0都對(duì)稱(chēng),則函數(shù)SKIPIF1<0是以SKIPIF1<0為周⑦函數(shù)SKIPIF1<0SKIPIF1<0的圖象關(guān)于SKIPIF1<0和直線SKIPIF1<0都對(duì)稱(chēng),則函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù).⑧若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù).【題型目錄】題型一:利用周期性求函數(shù)值題型二:利用周期性求函數(shù)解析式題型三:根據(jù)函數(shù)的對(duì)稱(chēng)性、周期性、奇偶性寫(xiě)函數(shù)題型四:根據(jù)函數(shù)的對(duì)稱(chēng)性、奇偶性、周期性綜合運(yùn)用【典型例題】題型一:利用周期性求函數(shù)值【例1】設(shè)SKIPIF1<0是定義在SKIPIF1<0上周期為2的函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,其中SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的值是.答案:1解析:SKIPIF1<0SKIPIF1<0是定義在SKIPIF1<0上周期為2的函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0【例2】設(shè)SKIPIF1<0為定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0__________答案:SKIPIF1<0解析:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0是周期為4的函數(shù),所以SKIPIF1<0【例3】定義在SKIPIF1<0上的函數(shù)SKIPIF1<0對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0等于A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:D解析:SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是周期為4的函數(shù),SKIPIF1<0【例4】(重慶南開(kāi)高一上期中)已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案:C解析:SKIPIF1<0SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0【例5】(2022·云南昭通·高一期末)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的周期函數(shù),且周期為2,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用函數(shù)的周期性,則SKIPIF1<0,又根據(jù)函數(shù)在SKIPIF1<0的解析式,求解SKIPIF1<0的值,即可得SKIPIF1<0的值.【詳解】解:由題可知SKIPIF1<0所以SKIPIF1<0又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0.故選:C.【題型專(zhuān)練】1.(2021·山東·臨沂市蘭山區(qū)教學(xué)研究室高三開(kāi)學(xué)考試)已知SKIPIF1<0是R上的奇函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.3 B.SKIPIF1<0 C.255 D.SKIPIF1<0【答案】B【分析】根據(jù)題意可知SKIPIF1<0是周期函數(shù),根據(jù)周期以及奇函數(shù)即可求解.【詳解】由SKIPIF1<0可得,SKIPIF1<0,故SKIPIF1<0是以4為周期的周期函數(shù),故SKIPIF1<0,故選:B2.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.0 B.1C.6 D.216【答案】C【分析】由SKIPIF1<0可得函數(shù)周期為6,進(jìn)而SKIPIF1<0,最后求出答案.【詳解】根據(jù)題意,偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0是周期為6的周期函數(shù),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0故選:C3.(重慶南開(kāi)高一上期末)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0.若對(duì)任意實(shí)數(shù)SKIPIF1<0,SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0()ASKIPIF1<0B.-1C.0D.1答案:D解析:由題意知,令SKIPIF1<0,可得SKIPIF1<0,因SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<04.(2022·云南紅河·高一期末)已知SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0,都有SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.1 D.2【答案】C【分析】SKIPIF1<0是定義在R上的奇函數(shù)得SKIPIF1<0,有SKIPIF1<0得到SKIPIF1<0是周期函數(shù),利用函數(shù)周期性可得答案.【詳解】SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0,SKIPIF1<0是周期為4的周期函數(shù),SKIPIF1<0.故選:C.5.(2022·黑龍江·大慶中學(xué)高二期末)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且滿足SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】依題意可得SKIPIF1<0,即可得到SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),再根據(jù)對(duì)數(shù)的運(yùn)算及奇函數(shù)的性質(zhì)計(jì)算可得.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),又SKIPIF1<0所以SKIPIF1<0,又SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0題型二:利用周期性求函數(shù)解析式【例1】已知定義在實(shí)數(shù)集R上的函數(shù)SKIPIF1<0滿足:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)當(dāng)SKIPIF1<0時(shí)解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),求函數(shù)的解析式。答案:SKIPIF1<0解析:SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),又因SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0因此當(dāng)SKIPIF1<0時(shí),函數(shù)的解析式為SKIPIF1<0【例2】(2022·全國(guó)·高一專(zhuān)題練習(xí))已知SKIPIF1<0是定義在SKIPIF1<0上周期為SKIPIF1<0的函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,那么當(dāng)SKIPIF1<0時(shí),SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)周期性求函數(shù)解析式即可.【詳解】解:因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是定義在SKIPIF1<0上周期為SKIPIF1<0的函數(shù)所以,SKIPIF1<0,故答案為:SKIPIF1<0【例3】(2021·山東師范大學(xué)附中高三期中)設(shè)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且對(duì)任意實(shí)數(shù)SKIPIF1<0,恒有SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的解析式;(2)計(jì)算SKIPIF1<0.【答案】(1)SKIPIF1<0,(2)SKIPIF1<0【分析】(1)利用奇函數(shù)和SKIPIF1<0判斷出SKIPIF1<0為周期為4的函數(shù),用代入法求出解析式;(2)利用函數(shù)的周期即可求值.(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是周期為4的周期函數(shù).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由已知得SKIPIF1<0.又SKIPIF1<0是奇函數(shù),SKIPIF1<0,SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0是周期為4的周期函數(shù),SKIPIF1<0,從而求得SKIPIF1<0時(shí),SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0是周期為4的周期函數(shù),SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0.【題型專(zhuān)練】1.(2021·上海南匯中學(xué)高三期中)設(shè)SKIPIF1<0是定義在R上以2為周期的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式SKIPIF1<0___________.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0是SKIPIF1<0時(shí)函數(shù)圖象上的任意一點(diǎn),然后利用周期和奇偶性將SKIPIF1<0轉(zhuǎn)化到區(qū)間SKIPIF1<0上,進(jìn)而代入解析式化簡(jiǎn)即可.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的周期為2,設(shè)SKIPIF1<0是SKIPIF1<0時(shí)函數(shù)圖象上的任意一點(diǎn),則點(diǎn)SKIPIF1<0在SKIPIF1<0時(shí)函數(shù)的圖象上,而函數(shù)是R上的奇函數(shù),則點(diǎn)SKIPIF1<0在SKIPIF1<0時(shí)的圖象上,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上的解析式SKIPIF1<0.故答案為:SKIPIF1<0.2.(2021·吉林·梅河口市第五中學(xué)高三階段練習(xí)(文))函數(shù)SKIPIF1<0滿足是SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為_(kāi)__________.【答案】SKIPIF1<0##SKIPIF1<0【分析】由題設(shè)遞推關(guān)系可得SKIPIF1<0,令SKIPIF1<0結(jié)合已知區(qū)間解析式即可求SKIPIF1<0時(shí)SKIPIF1<0的解析式,再應(yīng)用二次函數(shù)的性質(zhì)求最小值.【詳解】由題設(shè),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0上,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<03.(2021·江蘇·高一專(zhuān)題練習(xí))設(shè)SKIPIF1<0是定義在SKIPIF1<0上以2為周期的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在[4,6]上的解析式是__________【答案】SKIPIF1<0【分析】根據(jù)函數(shù)的周期及函數(shù)為奇函數(shù),分段求解函數(shù)的解析式即可.【詳解】因?yàn)镾KIPIF1<0是定義在SKIPIF1<0上以2為周期的奇函數(shù)且SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.綜上可得,函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式是SKIPIF1<0,故答案為:SKIPIF1<04.(2021·北京市十一學(xué)校高一期中)若定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0時(shí)SKIPIF1<0,則:(1)SKIPIF1<0__________;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0_________.【答案】
SKIPIF1<0
SKIPIF1<0【分析】(1)由題可得SKIPIF1<0,再結(jié)合條件可求;(2)由題可求當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,再結(jié)合函數(shù)的周期性即求.【詳解】∵定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即函數(shù)SKIPIF1<0是以4為周期的周期函數(shù),又SKIPIF1<0時(shí)SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0.故答案為:(1)SKIPIF1<0;(2)SKIPIF1<0題型三:根據(jù)函數(shù)的對(duì)稱(chēng)性、周期性、奇偶性寫(xiě)函數(shù)【例1】(2023·全國(guó)·高三專(zhuān)題練習(xí))寫(xiě)出一個(gè)最小正周期為3的偶函數(shù)SKIPIF1<0___________.【答案】SKIPIF1<0(答案不唯一)【分析】利用余弦函數(shù)的性質(zhì),結(jié)合已知函數(shù)性質(zhì)寫(xiě)出滿足要求的函數(shù)解析式即可.【詳解】由余弦函數(shù)性質(zhì)知:SKIPIF1<0為偶函數(shù)且SKIPIF1<0為常數(shù),又最小正周期為3,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0滿足要求.故答案為:SKIPIF1<0(答案不唯一)【例2】(2022·江蘇·金陵中學(xué)高三學(xué)業(yè)考試)寫(xiě)出一個(gè)滿足以下三個(gè)條件的函數(shù):SKIPIF1<0______.①定義域?yàn)镽;②SKIPIF1<0不是周期函數(shù);③SKIPIF1<0是周期為SKIPIF1<0的函數(shù).【答案】SKIPIF1<0(答案不唯一)【分析】由SKIPIF1<0的周期為SKIPIF1<0,結(jié)合正余弦函數(shù)的性質(zhì)確定SKIPIF1<0的解析式形式,即可得符合要求的函數(shù)式.【詳解】SKIPIF1<0的解析式形式:SKIPIF1<0或SKIPIF1<0均可.如:SKIPIF1<0定義域?yàn)镽,不是周期函數(shù),且SKIPIF1<0是周期為SKIPIF1<0的函數(shù).故答案為:SKIPIF1<0(答案不唯一)【例3】(2022·全國(guó)·高三專(zhuān)題練習(xí))寫(xiě)出一個(gè)同時(shí)滿足下列性質(zhì)①②③的函數(shù)SKIPIF1<0:__________.①定義域?yàn)镾KIPIF1<0;②SKIPIF1<0為偶函數(shù);③SKIPIF1<0為奇函數(shù).【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)題意和函數(shù)的奇偶性和周期性可知SKIPIF1<0是關(guān)于SKIPIF1<0軸對(duì)稱(chēng)、關(guān)于SKIPIF1<0中心對(duì)稱(chēng)、以4為周期的函數(shù),進(jìn)而直接得出結(jié)果.【詳解】由SKIPIF1<0為偶函數(shù),知SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱(chēng);由SKIPIF1<0為奇函數(shù),知SKIPIF1<0關(guān)于SKIPIF1<0中心對(duì)稱(chēng),所以SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱(chēng);所以SKIPIF1<0,則SKIPIF1<0以4為周期,故可取SKIPIF1<0.故答案為:SKIPIF1<0.【題型專(zhuān)練】1(2022·廣東茂名·二模)請(qǐng)寫(xiě)出一個(gè)函數(shù)SKIPIF1<0_______,使之同時(shí)具有以下性質(zhì):①圖象關(guān)于y軸對(duì)稱(chēng);②SKIPIF1<0,SKIPIF1<0.【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)題設(shè)函數(shù)性質(zhì)的描述,只需寫(xiě)出一個(gè)周期為4的偶函數(shù),結(jié)合余弦函數(shù)的性質(zhì)即可寫(xiě)出函數(shù)解析式.【詳解】由題設(shè),寫(xiě)出一個(gè)周期為4的偶函數(shù)即可,所以SKIPIF1<0滿足題設(shè)要求.故答案為:SKIPIF1<0(答案不唯一)2.(2022·北京通州·高三期末)最小正周期為2的函數(shù)的解析式可以是______.(寫(xiě)出一個(gè)即可)【答案】SKIPIF1<0【分析】根據(jù)正弦型三角函數(shù)的周期公式即可找出【詳解】根據(jù)正弦型三角函數(shù)的周期公式,最小正周期為2的函數(shù)的解析式可以是SKIPIF1<0.故答案為:SKIPIF1<0.3.(2022·全國(guó)·高三專(zhuān)題練習(xí)(理))函數(shù)SKIPIF1<0滿足以下條件:①SKIPIF1<0的定義域?yàn)镾KIPIF1<0,其圖像是一條連續(xù)不斷的曲線;②SKIPIF1<0,SKIPIF1<0;③當(dāng)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0;④SKIPIF1<0恰有兩個(gè)零點(diǎn),請(qǐng)寫(xiě)出函數(shù)SKIPIF1<0的一個(gè)解析式________【答案】SKIPIF1<0(答案不唯一)【分析】由題意可得函數(shù)SKIPIF1<0是偶函數(shù),且在SKIPIF1<0上為增函數(shù),函數(shù)圖象與SKIPIF1<0軸只有2個(gè)交點(diǎn),由此可得函數(shù)解析式【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),因?yàn)楫?dāng)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),因?yàn)镾KIPIF1<0恰有兩個(gè)零點(diǎn),所以SKIPIF1<0圖象與SKIPIF1<0軸只有2個(gè)交點(diǎn),所以函數(shù)SKIPIF1<0的一個(gè)解析式可以為SKIPIF1<0,故答案為:SKIPIF1<0(答案不唯一)題型四:根據(jù)函數(shù)的對(duì)稱(chēng)性、奇偶性、周期性綜合運(yùn)用【例1】(2022·貴州銅仁·高二期末(理))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足:SKIPIF1<0,又SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的值為(
)A.4 B.SKIPIF1<0 C.0 D.2【答案】C【分析】由SKIPIF1<0,可得SKIPIF1<0,再根據(jù)條件得到周期后即可求解.【詳解】由SKIPIF1<0,可知函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱(chēng),即有SKIPIF1<0;由SKIPIF1<0為偶函數(shù),可知函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),即有SKIPIF1<0.于是有SKIPIF1<0,從而可得SKIPIF1<0,因此可得函數(shù)SKIPIF1<0的周期為4.所以SKIPIF1<0,SKIPIF1<0.再由SKIPIF1<0,令SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0.故選:C【例2】(2022·陜西·長(zhǎng)安一中高一期末)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),則函數(shù)SKIPIF1<0的周期是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由奇函數(shù)性質(zhì)可得SKIPIF1<0,由偶函數(shù)性質(zhì)可得SKIPIF1<0,化簡(jiǎn)整理可得SKIPIF1<0,即可求出周期.【詳解】因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的周期是4.故選:C.【例3】(2022·湖南·長(zhǎng)沙一中高三開(kāi)學(xué)考試)已知SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0為偶函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【答案】D【分析】根據(jù)奇偶性的性質(zhì)化簡(jiǎn)可得SKIPIF1<0是以4為周期的函數(shù),即可求出.【詳解】因?yàn)镾KIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),故可得SKIPIF1<0,又SKIPIF1<0為偶函數(shù),故可得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0以4為周期,故SKIPIF1<0.故選:D.【例4】(2022·山東日照·高二期末)已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),且SKIPIF1<0與SKIPIF1<0的圖像關(guān)于y軸對(duì)稱(chēng),則(
)A.SKIPIF1<0是奇函數(shù) B.SKIPIF1<0是偶函數(shù)C.2是SKIPIF1<0一個(gè)周期 D.SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng)【答案】A【分析】根據(jù)函數(shù)奇偶性,對(duì)稱(chēng)性、周期性的定義一一判斷即可;【詳解】解:根據(jù)題意,SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),則SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0成中心對(duì)稱(chēng),SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),則SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),SKIPIF1<0與SKIPIF1<0的圖像關(guān)于y軸對(duì)稱(chēng),則SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0關(guān)于原點(diǎn)中心對(duì)稱(chēng),故SKIPIF1<0是奇函數(shù),故A正確.SKIPIF1<0是奇函數(shù),且SKIPIF1<0與SKIPIF1<0的圖像關(guān)于y軸對(duì)稱(chēng),故SKIPIF1<0是奇函數(shù),故B錯(cuò)誤.SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),則SKIPIF1<0,①SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),故SKIPIF1<0,可得SKIPIF1<0,聯(lián)立①得SKIPIF1<0,故SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,函數(shù)SKIPIF1<0是周期為4的周期函數(shù),由題意可得出4是函數(shù)SKIPIF1<0的周期,故C錯(cuò)誤.因?yàn)?是函數(shù)SKIPIF1<0的周期,SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱(chēng),所以SKIPIF1<0是SKIPIF1<0的中心對(duì)稱(chēng),SKIPIF1<0關(guān)于y軸對(duì)稱(chēng)為SKIPIF1<0,為SKIPIF1<0的對(duì)稱(chēng)中心,故D錯(cuò)誤.故選:A【例5】已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足條件SKIPIF1<0,且函數(shù)SKIPIF1<0為奇函數(shù),下列有關(guān)命題的說(shuō)法錯(cuò)誤的是()A.函數(shù)SKIPIF1<0是周期函數(shù) B.函數(shù)SKIPIF1<0為SKIPIF1<0上的偶函數(shù) C.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng)函數(shù) D.SKIPIF1<0為SKIPIF1<0上的單調(diào)函數(shù)答案:D解析:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0是周期為3的函數(shù),故A正確;因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,又因SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0上的偶函數(shù),所以B對(duì),D錯(cuò),因SKIPIF1<0為奇函數(shù),所以它關(guān)于原點(diǎn)對(duì)稱(chēng),故把SKIPIF1<0向左平移SKIPIF1<0單位,得到SKIPIF1<0的圖象,所以SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),所以C對(duì)。【例6】(2021新高考2卷8)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:B解析:SKIPIF1<0SKIPIF1<0是偶函數(shù),SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0,又因SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,又因SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0【例7】若函數(shù)SKIPIF1<0的定義域?yàn)镽,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】A【解析】【分析】根據(jù)題意賦值即可知函數(shù)SKIPIF1<0的一個(gè)周期為SKIPIF1<0,求出函數(shù)一個(gè)周期中的SKIPIF1<0的值,即可解出.【詳解】因?yàn)镾KIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0得,SKIPIF1<0,即有SKIPIF1<0,從而可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的一個(gè)周期為SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以一個(gè)周期內(nèi)的SKIPIF1<0.由于22除以6余4,所以SKIPIF1<0.故選:A.【題型專(zhuān)練】1.(2022·四川雅安·高二期末(文))已知函數(shù)SKIPIF1<0是SKIPIF1<0上的偶函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的值為(
)A.1 B.2 C.SKIPIF1<0 D.0【答案】A【分析】由偶函數(shù)可得SKIPIF1<0,由SKIPIF1<0可得對(duì)稱(chēng)性,再化簡(jiǎn)整理可得周期SKIPIF1<0,進(jìn)而根據(jù)性質(zhì)轉(zhuǎn)換SKIPIF1<0到SKIPIF1<0,再代入解析式求解即可.【詳解】由題,因?yàn)榕己瘮?shù),所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0是周期函數(shù),SKIPIF1<0,故SKIPIF1<0故選:A2.(2022·河南新鄉(xiāng)·高二期末(理))已知SKIPIF1<0是定義在R上的奇函數(shù),且滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.-8 B.-4 C.0 D.4【答案】B【分析】結(jié)合條件證得SKIPIF1<0的周期為8,即可求出結(jié)果.【詳解】因?yàn)镾KIPIF1<0是定義在R上的奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周期為8,所以SKIPIF1<0,故SKIPIF1<0.故選:B.3.(2022·湖南·高二期末)已知定義域是R的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0,則SKIPIF1<0(
)A.1 B.-1 C.2 D.-3【答案】B【分析】根據(jù)對(duì)稱(chēng)性可得函數(shù)具有周期性,根據(jù)周期可將SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0,又由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的周期為4,所以SKIPIF1<0.故選:B.4.函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若SKIPIF1<0與SKIPIF1<0都是奇函數(shù),則()A.SKIPIF1<0是偶函數(shù)B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0D.SKIPIF1<0是奇函數(shù)答案:D解析:SKIPIF1<0SKIPIF1<0是奇函數(shù),SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0,所以SKIPIF1<0為奇函數(shù)。5.(2021全國(guó)卷甲卷理科12)設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0答案:D解析:SKIPIF1<0SKIPIF1<0是奇函數(shù),SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),SKIPIF1<0SKIPIF1<0是偶函數(shù),SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0,又因SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,因SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0,因SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又因SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<06.已知SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),且對(duì)任意SKIPIF1<0都有SKIPIF1<0,若函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),且SKIPIF1<0,則SKIPIF1<0答案:SKIPIF1<0解析:SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以關(guān)于SKIPIF1<0對(duì)稱(chēng),因?yàn)镾KIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<07.(2020?岳麓區(qū)校級(jí)模擬)若對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為.答案:SKIPIF1<0解析:SKIPIF1<0若對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<08.(2022·河北深州市中學(xué)高三階段練習(xí)多選)已知函數(shù)SKIPIF1<0對(duì)SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱(chēng)B.SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱(chēng)C.SKIPIF1<0D.SKIPIF1<0【答案】ABC【分析】A選項(xiàng)根據(jù)題目條件立即得出,BCD選項(xiàng)通過(guò)已知條件合理的進(jìn)行“取代”,推出函數(shù)周期后便容易得出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),A選項(xiàng)正確;又SKIPIF1<0,令SKIPIF1<0去取代SKIPIF1<0,所以SKIPIF1<0,再令SKIPIF1<0取代SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周期為4,由SKIPIF1<0可得:SKIPIF1<0,所以SKIPIF1<0的圖像關(guān)于SKIPIF1<0對(duì)稱(chēng),結(jié)合SKIPIF1<0的周期為4,所以SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱(chēng),故B正確;定義在SKIPIF1<0上的奇函數(shù)滿足SKIPIF1<0,令SKIPIF1<0中SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,故C正確;SKIPIF1<0,故D不正確.故選:ABC.9.(2022·黑龍江齊齊哈爾·高二期末多選)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且函數(shù)SKIPIF1<0為偶函數(shù),則下列結(jié)論正確的是(
)A.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱(chēng)B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的零點(diǎn)有6個(gè)C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 目標(biāo)明確2025年公共衛(wèi)生執(zhí)業(yè)醫(yī)師考試試題及答案
- 西醫(yī)臨床知識(shí)測(cè)試試題及答案
- 激光技術(shù)新應(yīng)用探索試題及答案
- 健康管理師考試經(jīng)驗(yàn)分享與交流試題及答案
- 分析系統(tǒng)規(guī)劃與管理師考試的模擬測(cè)試方法試題及答案
- 監(jiān)理實(shí)務(wù)考試試題及答案
- 2025版高考?xì)v史新探究大一輪復(fù)習(xí)第十六單元1第48講中國(guó)古代歷史上的改革通關(guān)能力提升含2025屆新題含解析新人教版
- 網(wǎng)絡(luò)規(guī)劃設(shè)計(jì)師考試環(huán)境適應(yīng)能力探討試題及答案
- 江蘇專(zhuān)用2025版高考地理大一輪復(fù)習(xí)第四章工業(yè)地域的形成與發(fā)展學(xué)科關(guān)鍵能力提升10教案含解析新人教版必修2
- 2024-2025學(xué)年高中歷史第五單元中國(guó)近現(xiàn)代社會(huì)生活的變遷第15課交通和通訊工具的進(jìn)步練習(xí)含解析新人教版必修2
- 《專(zhuān)利法》課程思政教學(xué)案例(一等獎(jiǎng))
- 安全事故案例圖片合集事故警示
- 互聯(lián)網(wǎng)+智慧校園解決方案(最新詳細(xì)方案)
- CPK基本知識(shí)及實(shí)例
- 人字梯驗(yàn)收記錄表
- 工程建筑給排水外文文獻(xiàn)翻譯1
- 200句話搞定上海中考單詞(精華版)
- 船舶輔鍋爐的自動(dòng)控制系統(tǒng)分析
- 新員工培訓(xùn)考試【圖書(shū)專(zhuān)員】
- 防偽包裝技術(shù)
- 49000DWT江海直達(dá)成品油船設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論