陜西省西安市第八中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第1頁
陜西省西安市第八中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第2頁
陜西省西安市第八中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第3頁
陜西省西安市第八中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第4頁
陜西省西安市第八中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,滿足,在上的投影(正射影的數(shù)量)為-2,則的最小值為()A. B.10 C. D.82.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,在他所著的《數(shù)書九章》中提出的多項(xiàng)式求值的“秦九韶算法”,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法,求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入的值分別為4和2,則輸出的值為()A.32 B.64 C.65 D.1303.某校高一年級(jí)有男生540人,女生360人,用分層抽樣的方法從高一年級(jí)的學(xué)生中隨機(jī)抽取25名學(xué)生進(jìn)行問卷調(diào)查,則應(yīng)抽取的女生人數(shù)為A.5 B.10 C.4 D.204.在中,內(nèi)角,,所對的邊分別為,,.若的面積為,則角=()A. B.C. D.5.已知等比數(shù)列的前n項(xiàng)和為,若,,,則()A. B. C. D.6.P是直線x+y+2=0上任意一點(diǎn),點(diǎn)Q在圓x-22+yA.2 B.4-2 C.4+27.一組數(shù)據(jù)0,1,2,3,4的方差是A. B. C.2 D.48.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂面內(nèi),若飛機(jī)的高度為海拔18km,速度為1000m/h,飛行員先看到山頂?shù)母┙菫?,?jīng)過1min后又看到山頂?shù)母┙菫?,則山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):)A.11.4km B.6.6km C.6.5km D.5.6km9.已知銳角中,角所對的邊分別為,若,則的取值范圍是()A. B. C. D.10.已知直線的傾斜角為,在軸上的截距為2,則此直線方程為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)實(shí)數(shù)滿足,則的最小值為_____12.底面邊長為,高為的直三棱柱形容器內(nèi)放置一氣球,使氣球充氣且盡可能的膨脹(保持球的形狀),則氣球表面積的最大值為_______.13.?dāng)?shù)列滿足,設(shè)為數(shù)列的前項(xiàng)和,則__________.14.在△中,三個(gè)內(nèi)角、、的對邊分別為、、,若,,,則________15.已知無窮等比數(shù)列的所有項(xiàng)的和為,則首項(xiàng)的取值范圍為_____________.16.如圖,圓錐形容器的高為圓錐內(nèi)水面的高為,且,若將圓錐形容器倒置,水面高為,則等于__________.(用含有的代數(shù)式表示)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,以軸為始邊,作兩個(gè)角,它們終邊分別經(jīng)過點(diǎn)和,其中,,且.(1)求的值;(2)求的值.18.已知,,,,求的值.19.某家具廠有方木料90,五合板600,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)第張書桌需要方木料O.l,五合板2,生產(chǎn)每個(gè)書櫥而要方木料0.2,五合板1,出售一張方桌可獲利潤80元,出售一個(gè)書櫥可獲利潤120元.(1)如果只安排生產(chǎn)書桌,可獲利潤多少?(2)怎樣安排生產(chǎn)可使所得利潤最大?20.已知函數(shù),若,且,,求滿足條件的,.21.?dāng)?shù)列的前項(xiàng)和.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和,并求使成立的實(shí)數(shù)最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

在上的投影(正射影的數(shù)量)為可知,可求出,求的最小值即可得出結(jié)果.【詳解】因?yàn)樵谏系耐队埃ㄕ溆暗臄?shù)量)為,所以,即,而,所以,因?yàn)樗?,即,故選D.【點(diǎn)睛】本題主要考查了向量在向量上的正射影,向量的數(shù)量積,屬于難題.2、C【解析】程序運(yùn)行循環(huán)時(shí)變量值為:;;;,退出循環(huán),輸出,故選C.3、B【解析】

直接利用分層抽樣按照比例抽取得到答案.【詳解】設(shè)應(yīng)抽取的女生人數(shù)為,則,解得.故答案選B【點(diǎn)睛】本題考查了分層抽樣,屬于簡單題.4、C【解析】

由三角形面積公式,結(jié)合所給條件式及余弦定理,即可求得角A.【詳解】中,內(nèi)角,,所對的邊分別為,,則由余弦定理可知而由題意可知,代入可得所以化簡可得因?yàn)樗怨蔬x:C【點(diǎn)睛】本題考查了三角形面積公式的應(yīng)用,余弦定理邊角轉(zhuǎn)化的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】

根據(jù)等比數(shù)列前n項(xiàng)和的性質(zhì)可知、、成等比數(shù)列,即可得關(guān)于的等式,化簡即可得解.【詳解】等比數(shù)列的前n項(xiàng)和為,若,,根據(jù)等比數(shù)列前n項(xiàng)和性質(zhì)可知,、、滿足:化簡可得故選:D【點(diǎn)睛】本題考查了等比數(shù)列前n項(xiàng)和的性質(zhì)及簡單應(yīng)用,屬于基礎(chǔ)題.6、D【解析】

首先求出圓心到直線的距離與半徑比較大小,得到直線與圓是相離的,根據(jù)圓上的點(diǎn)到直線的距離的最小值等于圓心到直線的距離減半徑,求得結(jié)果.【詳解】因?yàn)閳A心(2,0)到直線x+y+2=0的距離為d=2+0+2所以直線x+y+2=0與圓(x-2)2所以PQ的最小值等于圓心到直線的距離減去半徑,即PQmin故選D.【點(diǎn)睛】該題考查的是有關(guān)直線與圓的問題,涉及到的知識(shí)點(diǎn)有直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,圓上的點(diǎn)到直線的距離的最小值問題,屬于簡單題目.7、C【解析】

先求得平均數(shù),再根據(jù)方差公式計(jì)算?!驹斀狻繑?shù)據(jù)的平均數(shù)為:方差是=2,選C。【點(diǎn)睛】方差公式,代入計(jì)算即可。8、C【解析】

根據(jù)題意求得和的長,然后利用正弦定理求得BC,最后利用求得問題答案.【詳解】在中,根據(jù)正弦定理,所以:山頂?shù)暮0胃叨葹?8-11.5=6.5km.故選:C【點(diǎn)睛】本題考查了正弦定理在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)應(yīng)用,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、B【解析】

利用余弦定理化簡后可得,再利用正弦定理把邊角關(guān)系化為角的三角函數(shù)的關(guān)系式,從而得到,因此,結(jié)合的范圍可得所求的取值范圍.【詳解】,因?yàn)闉殇J角三角形,所以,,,故,選B.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.10、D【解析】

由題意可得直線的斜率和截距,由斜截式可得答案.【詳解】解:∵直線的傾斜角為45°,∴直線的斜率為k=tan45°=1,由斜截式可得方程為:y=x+2,故選:D.【點(diǎn)睛】本題考查直線的斜截式方程,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】解:由實(shí)數(shù)滿足作出可行域如圖,

由圖形可知:.

令,化為,

由圖可知,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最小,有最小值為1.

故答案為:1.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.12、【解析】由題意,氣球充氣且盡可能地膨脹時(shí),氣球的半徑為底面三角形內(nèi)切圓的半徑

∵底面三角形的邊長分別為,∴底面三角形的邊長為直角三角形,利用等面積可求得∴氣球表面積為4π.13、【解析】

先利用裂項(xiàng)求和法將數(shù)列的通項(xiàng)化簡,并求出,由此可得出的值.【詳解】,.,因此,,故答案為:.【點(diǎn)睛】本題考查裂項(xiàng)法求和,要理解裂項(xiàng)求和法對數(shù)列通項(xiàng)結(jié)構(gòu)的要求,并熟悉裂項(xiàng)法求和的基本步驟,考查計(jì)算能力,屬于中等題.14、【解析】

利用正弦定理求解角,再利用面積公式求解即可.【詳解】由,因?yàn)?故,.故.故答案為:【點(diǎn)睛】本題主要考查了解三角形的運(yùn)用,根據(jù)題中所給的邊角關(guān)系選擇正弦定理與面積公式等.屬于基礎(chǔ)題型.15、【解析】

設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關(guān)系式,由此可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項(xiàng)的和為,則,.當(dāng)時(shí),則,此時(shí),;當(dāng)時(shí),則,此時(shí),.因此,首項(xiàng)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查利用無窮等比數(shù)列的和求首項(xiàng)的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項(xiàng)和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.16、【解析】

根據(jù)水的體積不變,列出方程,解出的值,即可得到答案.【詳解】設(shè)圓錐形容器的底面面積為,則未倒置前液面的面積為,所以水的體積為,設(shè)倒置后液面面積為,則,所以,所以水的體積為,所以,解得.【點(diǎn)睛】本題主要考查了圓錐的結(jié)構(gòu)特征,以及圓錐的體積的計(jì)算與應(yīng)用,其中解答中熟練應(yīng)用圓錐的結(jié)構(gòu)特征,利用體積公式準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與運(yùn)算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)正弦的定義求得,再運(yùn)用余弦的二倍角公式求解,(2)由(1)問可得、兩點(diǎn)的坐標(biāo),從而再運(yùn)用正切的和角公式求解.【詳解】(1)由得:所以:(2)由則故因此.【點(diǎn)睛】本題考查三角函數(shù)的定義和余弦的二倍角公式和正切的和角公式,屬于基礎(chǔ)題.18、【解析】

根據(jù)角的范圍結(jié)合條件可求出,的值,然后求出的值,再由二倍角公式可求解.【詳解】由,,得.又,則.由,,得.所以又所以【點(diǎn)睛】本題考查兩角和與差的三角函數(shù)公式和同角三角函數(shù)關(guān)系以及二倍角公式,考察角變換的應(yīng)用,屬于中檔題.19、(1)只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元;(2)生產(chǎn)書桌100張、書櫥400個(gè),可使所得利潤最大【解析】

(1)設(shè)只生產(chǎn)書桌x個(gè),可獲得利潤z元,則,由此可得最大值;(2)設(shè)生產(chǎn)書桌x張,書櫥y個(gè),利潤總額為z元.則,,由線性規(guī)劃知識(shí)可求得的最大值.即作可行域,作直線,平移此直線得最優(yōu)解.【詳解】由題意可畫表格如下:方木料()五合板()利潤(元)書桌(個(gè))0.1280書櫥(個(gè))0.21120(1)設(shè)只生產(chǎn)書桌x個(gè),可獲得利潤z元,則,∴∴所以當(dāng)時(shí),(元),即如果只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元(2)設(shè)生產(chǎn)書桌x張,書櫥y個(gè),利潤總額為z元.則,∴在直角坐標(biāo)平面內(nèi)作出上面不等式組所表示的平面區(qū)域,即可行域作直線,即直線.把直線l向右上方平移至的位置時(shí),直線經(jīng)過可行域上的點(diǎn)M,此時(shí)取得最大值由解得點(diǎn)M的坐標(biāo)為.∴當(dāng),時(shí),(元).因此,生產(chǎn)書桌100張、書櫥400個(gè),可使所得利潤最大所以當(dāng),時(shí),.因此,生產(chǎn)書桌100張、書櫥400個(gè),可使所得利潤最大.【點(diǎn)睛】本題考查簡單的線性規(guī)劃的實(shí)際應(yīng)用,解題時(shí)需根據(jù)已知條件設(shè)出變量,列出二元一次不等式組表示的約束條件,列出目標(biāo)函數(shù),然后由解決線性規(guī)劃的方法求最優(yōu)解.20、,【解析】

利用三角恒等變換,化簡的解析式,從而得出結(jié)論.【詳解】解:,∴,待定系數(shù),可得,又,∴,∴,.【點(diǎn)睛】本題主要考查三角恒等變換,屬于基礎(chǔ)題.21、(1);(2),.【解析】

(1)由已知可先求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論