河北省大名一中2023年高一數(shù)學第二學期期末教學質量檢測試題含解析_第1頁
河北省大名一中2023年高一數(shù)學第二學期期末教學質量檢測試題含解析_第2頁
河北省大名一中2023年高一數(shù)學第二學期期末教學質量檢測試題含解析_第3頁
河北省大名一中2023年高一數(shù)學第二學期期末教學質量檢測試題含解析_第4頁
河北省大名一中2023年高一數(shù)學第二學期期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.的內角的對邊分別為成等比數(shù)列,且,則等于()A. B. C. D.3.已知數(shù)列滿足,,則()A. B. C. D.4.樣本中共有個個體,其值分別為、、、、.若該樣本的平均值為,則樣本的方差為()A. B. C. D.5.已知三棱錐的所有頂點都在球的球面上,,則球的表面積為()A. B. C. D.6.已知函數(shù)的部分圖象如圖所示,則函數(shù)在上的最大值為()A. B. C. D.17.圓關于直線對稱,則的值是()A. B. C. D.8.已知函數(shù)的定義域為,當時,,且對任意的實數(shù),等式恒成立,若數(shù)列滿足,且,則的值為()A.4037 B.4038 C.4027 D.40289.已知數(shù)列的前項和為,滿足,則通項公式等于().A. B. C. D.10.對數(shù)列,“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.非充分非必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知線段上有個確定的點(包括端點與).現(xiàn)對這些點進行往返標數(shù)(從…進行標數(shù),遇到同方向點不夠數(shù)時就“調頭”往回數(shù)).如圖:在點上標,稱為點,然后從點開始數(shù)到第二個數(shù),標上,稱為點,再從點開始數(shù)到第三個數(shù),標上,稱為點(標上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標記到點上,則點上的所有標記的數(shù)中,最小的是_______.12.已知圓:,若對于圓:上任意一點,在圓上總存在點使得,則實數(shù)的取值范圍為__________.13.已知無窮等比數(shù)列的首項為,公比為q,且,則首項的取值范圍是________.14.函數(shù)可由y=sin2x向左平移___________個單位得到.15.若,則的取值范圍是________.16.向量.若向量,則實數(shù)的值是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某地統(tǒng)計局調查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示.(1)求居民月收入在[3000,3500)內的頻率;(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);(3)為了分析居民的月收入與年齡、職業(yè)等方面的關系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進一步分析,則應從月收入在[2500,3000)內的居民中抽取多少人?18.已知(1)求的值;(2)求的值.19.關于的不等式,其中為大于0的常數(shù)。(1)若不等式的解集為,求實數(shù)的取值范圍;(2)若不等式的解集為,且中恰好含有三個整數(shù),求實數(shù)的取值范圍.20.已知函數(shù),,(,為常數(shù)).(1)若方程有兩個異號實數(shù)解,求實數(shù)的取值范圍;(2)若的圖像與軸有3個交點,求實數(shù)的取值范圍;(3)記,若在上單調遞增,求實數(shù)的取值范圍.21.某機構通過對某企業(yè)今年的生產經營情況的調查,得到每月利潤(單位:萬元)與相應月份數(shù)的部分數(shù)據(jù)如表:14712229244241196(1)根據(jù)如表數(shù)據(jù),請從下列三個函數(shù)中選取一個恰當?shù)暮瘮?shù)描述與的變化關系,并說明理由,,,;(2)利用(1)中選擇的函數(shù),估計月利潤最大的是第幾個月,并求出該月的利潤.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)空間線、面的位置關系有關定理,對四個選項逐一分析排除,由此得出正確選項.【詳解】對于A選項,直線有可能在平面內,故A選項錯誤.對于B選項,兩個平面有可能相交,平行于它們的交線,故B選項錯誤.對于C選項,可能平行,故C選項錯誤.根據(jù)線面垂直的性質定理可知D選項正確.故選D.【點睛】本小題主要考查空間線、面位置關系的判斷,屬于基礎題.2、B【解析】

成等比數(shù)列,可得,又,可得,利用余弦定理即可得出.【詳解】解:成等比數(shù)列,,又,,則故選B.【點睛】本題考查了等比數(shù)列的性質、余弦定理,考查了推理能力與計算能力,屬于中檔題.3、A【解析】

由給出的遞推式變形,構造出新的等比數(shù)列,由等比數(shù)列的通項公式求出的表達式,再利用等比數(shù)列的求和公式求解即可.【詳解】解:解:在數(shù)列中,

由,得,

,

,

則數(shù)列是以2為首項,以2為公比的等比數(shù)列,

.,故選:A.【點睛】本題考查了數(shù)列的遞推式,考查了等比關系的確定以及等比數(shù)列的求和公式,屬中檔題.4、D【解析】

根據(jù)樣本的平均數(shù)計算出的值,再利用方差公式計算出樣本的方差.【詳解】由題意可知,,解得,因此,該樣本的方差為,故選:D.【點睛】本題考查方差與平均數(shù)的計算,靈活利用平均數(shù)與方差公式進行求解是解本題的關鍵,考查運算求解能力,屬于基礎題.5、A【解析】設外接圓半徑為,三棱錐外接球半徑為,∵,∴,∴,∴,∴,由題意知,平面,則將三棱錐補成三棱柱可得,,∴,故選A.點睛:空間幾何體與球接、切問題的求解方法(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關系求解.(2)若球面上四點構成的三條線段兩兩互相垂直,且,一般把有關元素“補形”成為一個球內接長方體,利用求解.6、A【解析】

由圖象求出T、ω和φ的值,寫出f(x)的解析式,再求x∈[6,10]時函數(shù)f(x)的最大值.【詳解】由圖象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函數(shù)的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的圖象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函數(shù)的解析式是f(x)=sin(x)當x∈[6,10]時,x∈[,],∴sin(x)∈[﹣1,];∴函數(shù)f(x)的最大值是.故選A.【點睛】本題考查了三角函數(shù)的圖象與性質的應用問題,熟記圖像與性質是關鍵,是基礎題.7、B【解析】圓關于直線對稱,所以圓心(1,1)在直線上,得.故選B.8、A【解析】

由,對任意的實數(shù),等式恒成立,且,得到an+1=an+2,由等差數(shù)列的定義求得結果.【詳解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)?f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,則f(﹣1)?f(0)=f(﹣1),∵當x<0時,f(x)>1,∴f(﹣1)≠0,則f(0)=1,則f(an+1)f(﹣2﹣an)=1,等價為f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),則an+1﹣2﹣an=0,∴an+1﹣an=2.∴數(shù)列{an}是以1為首項,以2為公差的等差數(shù)列,首項a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故選:A【點睛】本題主要考查數(shù)列與函數(shù)的綜合運用,根據(jù)抽象函數(shù)的關系結合等差數(shù)列的通項公式建立方程是解決本題的關鍵,屬于中檔題.9、C【解析】

代入求得;根據(jù)可證得數(shù)列為等比數(shù)列,從而利用等比數(shù)列通項公式求得結果.【詳解】當時,當且時,則,即數(shù)列是以為首項,為公比的等比數(shù)列本題正確選項:【點睛】本題考查數(shù)列通項公式的求解,關鍵是能夠利用得到數(shù)列為等比數(shù)列,屬于常規(guī)題型.10、A【解析】

根據(jù)遞增數(shù)列的性質和充分必要條件判斷即可【詳解】對于任意成立可以推出其前n項和數(shù)列為遞增數(shù)列,但反過來不成立如當時其,此時為遞增數(shù)列但所以“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的充分非必要條件故選:A【點睛】要說明一個命題不成立,只需舉出一個反例即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,則,令,即可得.【詳解】依照題意知,標有2的是1+2,標有3的是1+2+3,……,標有2019的是1+2+3+……+2019,將將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,,令,,解得,故點上的所有標記的數(shù)中,最小的是3.【點睛】本題主要考查利用合情推理,分析解決問題的能力.意在考查學生的邏輯推理能力,12、【解析】

由,知為圓的切線,所以兩圓外離,即圓心距大于兩半徑之和,代入方程即可?!驹斀狻坑?,知為圓的切線,即在圓上任意一點都可以向圓作切線,當兩圓外離時,滿足條件,所以,,即,化簡,得:,解得:或.【點睛】和圓半徑所成夾角為,即是圓的切線,兩圓外離表示圓心距大于兩半徑之和。13、【解析】

根據(jù)極限存在得出,對分、和三種情況討論得出與之間的關系,可得出的取值范圍.【詳解】由于,則.①當時,則,;②當時,則,;③當時,,解得.綜上所述:首項的取值范圍是,故答案為:.【點睛】本題考查極限的應用,要結合極限的定義得出公比的取值范圍,同時要對公比的取值范圍進行分類討論,考查分類討論思想的應用,屬于中等題.14、【解析】

將轉化為,再利用平移公式得到答案.【詳解】向左平移故答案為【點睛】本題考查三角函數(shù)圖像的平移,將正弦函數(shù)化為余弦函數(shù)是解題的關鍵,也可以將余弦函數(shù)化為正弦函數(shù)求解.15、【解析】

利用反函數(shù)的運算法則,定義及其性質,求解即可.【詳解】由,得所以,又因為,所以.故答案為:【點睛】本題考查反余弦函數(shù)的運算法則,反函數(shù)的定義域,考查學生計算能力,屬于基礎題.16、-3【解析】

試題分析:∵,∴,又∵,∴,∴,∴考點:本題考查了向量的坐標運算點評:熟練運用向量的坐標運算是解決此類問題的關鍵,屬基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)0.15(2)2400(3)25人【解析】

(1)由頻率分布直方圖計算可得月收入在[3000,3500)內的頻率;(2)分別計算小長方形的面積值,利用中位數(shù)的特點即可確定中位數(shù)的值;(3)首先確定10000人中月收入在[2500,3000]內的人數(shù),然后結合分層抽樣的特點可得應抽取的人數(shù).【詳解】(1)居民月收入在[3000,3500]內的頻率為(2)因為,,,,所以樣本數(shù)據(jù)的中位數(shù)為.(3)居民月收入在[2500,3000]內的頻率為,所以這10000人中月收入在[2500,3000]內的人數(shù)為.從這10000人中用分層抽樣的方法抽出100人,則應從月收入在[2500,3000]內的居民中抽取(人).【點睛】利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均數(shù)時,應注意三點:①最高的小長方形底邊中點的橫坐標即是眾數(shù);②中位數(shù)左邊和右邊的小長方形的面積和是相等的;③平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點的橫坐標之和.18、(1)20,(2)【解析】

(1)先利用同角三角函數(shù)的基本關系求得cos和tan的值,進而利用二倍角公式把sin2展開,把sin和cos的值代入即可.(2)先利用誘導公式使=tan(﹣),再利用正切的兩角和公式展開后,把tanα的值代入即可求得答案.【詳解】(1)由,得,所以=(2)∵,∴【點睛】本題主要考查了三角函數(shù)的化簡求值的問題.要求學生能靈活運用三角函數(shù)的基本公式.19、(1);(2)【解析】

(1)關于的不等式的解集為,得出判別式△,且,由此求出的取值范圍;(2)由題意知判別式△,設,利用對稱軸以及(1),,得出不等式的解集中恰好有三個整數(shù),等價于,由此求出的取值范圍.【詳解】(1)由題意得一元二次不等式對應方程的判別式,結合,解得.(2)由題意得一元二次不等式對應方程的判別式,解得.又,所以.設,其對稱軸為.注意到,,對稱軸,所以不等式解集中恰好有三個整數(shù)只能是1、2、3,此時中恰好含有三個整數(shù)等價于:,解得.【點睛】本題考查了不等式的解法與應用問題.20、(1)(2)(3)或【解析】

(1)由題意,可知只要,即可使得方程有兩個異號的實數(shù)解,得到答案;(2)由題意,得,則,再由的圖象與軸由3個交點,列出相應的條件,即可求解.(3)由題意得,分類討論確定函數(shù)的單調性,即可得到答案.【詳解】由題可得,,與軸有一個交點;與有兩個交點綜上可得:實數(shù)的取值范圍或【點睛】本題主要考查了函數(shù)與方程的綜合應用,以及分段函數(shù)的性質的綜合應用,其中解答中認真審題,合理分類討論及利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論