版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從甲、乙、丙、丁四人中隨機選出人參加志愿活動,則甲被選中的概率為()A. B. C. D.2.設(shè),且,則的最小值為()A. B. C. D.3.的弧度數(shù)是()A. B. C. D.4.已知扇形的弧長是8,其所在圓的直徑是4,則扇形的面積是()A.8 B.6 C.4 D.165.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.一個三棱錐的三視圖如圖所示,則該棱錐的全面積為()A. B. C. D.7.在下列結(jié)論中,正確的為()A.兩個有共同起點的單位向量,其終點必相同B.向量與向量的長度相等C.向量就是有向線段D.零向量是沒有方向的8.實數(shù)數(shù)列為等比數(shù)列,則()A.-2 B.2 C. D.9.執(zhí)行如圖所示的程序框圖,若輸出的S=88,則判斷框內(nèi)應(yīng)填入的條件是()A.k>4? B.k>5? C.k>6? D.k>7?10.已知等差數(shù)列的公差為2,且是與的等比中項,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等比數(shù)列,公比為,且,,則_________.12.設(shè)函數(shù)(是常數(shù),).若在區(qū)間上具有單調(diào)性,且,則的最小正周期為_________.13.若向量,,且,則實數(shù)______.14.設(shè)等比數(shù)列的前項和為,若,,則的值為______.15.若等比數(shù)列的各項均為正數(shù),且,則等于__________.16.函數(shù)f(x)=coscos的最小正周期為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角A、B、C所對的邊分別為,,,已知.(Ⅰ)求角B的大??;(Ⅱ)設(shè),,求.18.已知是同一平面內(nèi)的三個向量,;(1)若,且,求的坐標;(2)若,且與垂直,求與的夾角.19.已知三棱柱中,平面ABC,,,M為AC中點.(1)證明:直線平面;(2)求異面直線與所成角的大小.20.在平面直角坐標系中,點是坐標原點,已知點為線段上靠近點的三等分點.求點的坐標:若點在軸上,且直線與直線垂直,求點的坐標.21.在如圖所示的直角梯形中,,求該梯形繞上底邊所在直線旋轉(zhuǎn)一周所形成幾何體的表面積和體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分析:用列舉法得出甲、乙、丙、丁四人中隨機選出人參加志愿活動的事件數(shù),從而可求甲被選中的概率.詳解:從甲、乙、丙、丁四人中隨機選出人參加志愿活動,包括:甲乙;甲丙;甲??;乙丙;乙丁;丙丁6種情況,甲被選中的概率為.故選C.點睛:本題考查用列舉法求基本事件的概率,解題的關(guān)鍵是確定基本事件,屬于基礎(chǔ)題.2、D【解析】
本題首先可將轉(zhuǎn)化為,然后將其化簡為,最后利用基本不等式即可得出結(jié)果.【詳解】,當(dāng)且僅當(dāng),即時成立,故選D.【點睛】本題考查利用基本不等式求最值,基本不等式公式為,考查化歸與轉(zhuǎn)化思想,是簡單題.3、B【解析】
由角度與弧度的關(guān)系轉(zhuǎn)化.【詳解】-150.故選:B.【點睛】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.4、A【解析】
直接利用扇形的面積公式求解.【詳解】扇形的弧長l=8,半徑r=2,由扇形的面積公式可知,該扇形的面積S=1故選A【點睛】本題主要考查扇形面積的計算,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.5、A【解析】
對分類討論,利用兩條直線相互垂直的充要條件即可得出.【詳解】由題意,當(dāng)時,兩條直線分別化為:,,此時兩條直線相互垂直;當(dāng)時,兩條直線分別化為:,,此時兩條直線不垂直,舍去;當(dāng)且時,由兩條直線相互垂直,則,即,解得或;綜上可得:或,兩條直線相互垂直,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.【點睛】本題考查了簡易邏輯的判定方法、兩條直線相互垂直的充要條件,考查了推理能力與計算能力,屬于基礎(chǔ)題.6、A【解析】
數(shù)形結(jié)合,還原出該幾何體的直觀圖,計算出各面的面積,可得結(jié)果.【詳解】如圖為等腰直角三角形,平面根據(jù)三視圖,可知點到的距離為點到的距離為所以,故該棱錐的全面積為故選:A【點睛】本題考查三視圖還原,并求表面積,難點在于還原幾何體,對于一些常見的幾何體要熟悉其三視圖,對解題有很大幫助,屬中檔題.7、B【解析】
逐一分析選項,得到答案.【詳解】A.單位向量的方向任意,所以當(dāng)起點相同時,終點在以起點為圓心的單位圓上,終點不一定相同,所以選項不正確;B.向量與向量是相反向量,方向相反,長度相等,所以選項正確;C.向量是既有大小,又有方向的向量,可以用有向線段表示,但不能說向量就是有向線段,所以選項不正確;D.規(guī)定零向量的方向任意,而不是沒有方向,所以選項不正確.故選B.【點睛】本題考查了向量的基本概念,屬于基礎(chǔ)題型.8、B【解析】
由等比數(shù)列的性質(zhì)計算,注意項與項之間的關(guān)系即可.【詳解】由題意,,又與同號,∴.故選B.【點睛】本題考查等比數(shù)列的性質(zhì),解題時要注意等比數(shù)列中奇數(shù)項同號,偶數(shù)項同號.9、B【解析】
分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S的值,條件框內(nèi)的語句決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到結(jié)果.【詳解】程序在運行過程中各變量值變化如下:第一次循環(huán)k=2,S=2;是第二次循環(huán)k=3,S=7;是第三次循環(huán)k=4,S=18;是第四次循環(huán)k=5,S=41;是第五次循環(huán)=6,S=88;否故退出循環(huán)的條件應(yīng)為k>5?,故選B.【點睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.10、A【解析】
直接利用等差數(shù)列公式和等比中項公式得到答案.【詳解】是與的等比中項,故即解得:故選:A【點睛】本題考查了等差數(shù)列和等比中項,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
先利用等比中項的性質(zhì)計算出的值,然后由可求出的值.【詳解】由等比中項的性質(zhì)可得,得,所以,,,故答案為.【點睛】本題考查等比數(shù)列公比的計算,充分利用等比中項和等比數(shù)列相關(guān)性質(zhì)的應(yīng)用,可簡化計算,屬于中等題.12、【解析】
由在區(qū)間上具有單調(diào)性,且知,函數(shù)的對稱中心為,由知函數(shù)的對稱軸為直線,設(shè)函數(shù)的最小正周期為,所以,,即,所以,解得,故答案為.考點:函數(shù)的對稱性、周期性,屬于中檔題.13、【解析】
根據(jù),兩個向量平行的條件是建立等式,解之即可.【詳解】解:因為,,且所以解得故答案為:【點睛】本題主要考查兩個向量坐標形式的平行的充要條件,屬于基礎(chǔ)題.14、16【解析】
利用及可計算,從而可計算的值.【詳解】因為,故,因為,故,故,故填16.【點睛】等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題.15、50【解析】由題意可得,=,填50.16、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==2三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化簡整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【詳解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,則.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【點睛】本題考查了正弦定理、余弦定理、和差公式,考查了推理能力與計算能力,屬于中檔題.18、(1)或;(2).【解析】
(1)設(shè)向量,根據(jù)和得到關(guān)于的方程組,從而得到答案;(2)根據(jù)與垂直,得到的值,根據(jù)向量夾角公式得到的值,從而得到的值.【詳解】(1)設(shè)向量,因為,,,所以,解得,或所以或;(2)因為與垂直,所以,所以而,,所以,得,與的夾角為,所以,因為,所以.【點睛】本題考查根據(jù)向量的平行求向量的坐標,根據(jù)向量的垂直關(guān)系求向量的夾角,屬于簡單題.19、(1)證明見解析(2)【解析】
(1)連接交于點O,再證明,得證;(2)先求,可得.再結(jié)合即可得解.【詳解】證明:(1)連接交于點O,連接OM,為平行四邊形,為的中點,又M為AC的中點,.又平面,平面.平面.(2)平面ABC,,.又,由M為AC中點,,,又O為的中點,.,.所以異面直線與所成角的大小為.【點睛】本題考查了線面平行的判定定理,重點考查了異面直線所成角的求法,屬基礎(chǔ)題.20、(1)(2)【解析】
(1)由題意利用線段的定比分點坐標公式,兩個向量坐標形式的運算法則,求出點P的坐標.(2)由題意利用兩個向量垂直的性質(zhì),兩個向量坐標形式的運算法則,求出點Q的坐標.【詳解】設(shè),因為,所以,又,所以,解得,從而.設(shè),所以,由已知直線與直線垂直,所以則,解得,所以.【點睛】本題主要考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度出租車座套定制與品牌形象設(shè)計合同4篇
- 二零二五版體育賽事直播版權(quán)購買與轉(zhuǎn)授權(quán)合同3篇
- 2025年健身房個人特訓(xùn)計劃合同
- 2025年度農(nóng)場果品種植技術(shù)引進與推廣合同4篇
- 2025年倉儲空調(diào)冷鏈合同
- 2025年度窗簾行業(yè)展會組織與策劃合同2篇
- 二零二五年度環(huán)保產(chǎn)業(yè)讓與擔(dān)保合同(綠色發(fā)展)3篇
- 二零二五年度門窗行業(yè)廣告宣傳及贊助合同4篇
- 二零二五年度戶外景觀門窗安裝工程合同2篇
- 二零二五年度南京市租賃房屋租賃保證金合同4篇
- 南通市2025屆高三第一次調(diào)研測試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學(xué)一模試卷
- 2025中國人民保險集團校園招聘高頻重點提升(共500題)附帶答案詳解
- 重癥患者家屬溝通管理制度
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對法》及其應(yīng)用案例
- IF鋼物理冶金原理與關(guān)鍵工藝技術(shù)1
- 銷售提成對賭協(xié)議書范本 3篇
- 勞務(wù)派遣招標文件范本
- EPC項目階段劃分及工作結(jié)構(gòu)分解方案
- 《跨學(xué)科實踐活動4 基于特定需求設(shè)計和制作簡易供氧器》教學(xué)設(shè)計
- 信息安全意識培訓(xùn)課件
評論
0/150
提交評論