2022-2023學年北京市海淀區(qū)市級名校數(shù)學高一下期末考試模擬試題含解析_第1頁
2022-2023學年北京市海淀區(qū)市級名校數(shù)學高一下期末考試模擬試題含解析_第2頁
2022-2023學年北京市海淀區(qū)市級名校數(shù)學高一下期末考試模擬試題含解析_第3頁
2022-2023學年北京市海淀區(qū)市級名校數(shù)學高一下期末考試模擬試題含解析_第4頁
2022-2023學年北京市海淀區(qū)市級名校數(shù)學高一下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中秋的促銷活動中,某商場對9月14日9時到14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知12時到14時的銷售額為萬元,則10時到11時的銷售額為()A.萬元 B.萬元 C.萬元 D.萬元2.過點且在兩坐標軸上截距相等的直線方程是()A. B.C.或 D.或3.在邊長為2的菱形中,,是的中點,則A. B. C. D.4.直線的傾斜角不可能為()A. B. C. D.5.已知向量,,若,共線,則實數(shù)()A. B. C. D.66.已知銳角中,角所對的邊分別為,若,則的取值范圍是()A. B. C. D.7.在中,,,,則=()A. B.C. D.8.如果存在實數(shù),使成立,那么實數(shù)的取值范圍是()A. B.或C.或 D.或9.四棱錐中,平面,底面是正方形,且,則直線與平面所成角為()A. B. C. D.10.設函數(shù)的圖象分別向左平移m(m>0)個單位,向右平移n(n>0>個單位,所得到的兩個圖象都與函數(shù)的圖象重合的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設為使互不重合的平面,是互不重合的直線,給出下列四個命題:①②③④若;其中正確命題的序號為.12.用秦九韶算法求多項式當時的值的過程中:,__.13.已知,,是與的等比中項,則最小值為_________.14.在銳角△中,角所對應的邊分別為,若,則角等于________.15.我國高鐵發(fā)展迅速,技術先進.經(jīng)統(tǒng)計,在經(jīng)停某站的高鐵列車中,有10個車次的正點率為0.97,有20個車次的正點率為0.98,有10個車次的正點率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點率的估計值為___________.16.正六棱柱各棱長均為,則一動點從出發(fā)沿表面移動到時的最短路程為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F(xiàn)分別是AB,PD的中點,且PA=AD.(Ⅰ)求證:AF∥平面PEC;(Ⅱ)求證:平面PEC⊥平面PCD.18.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù),的單調(diào)遞減區(qū)間.19.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實數(shù)解,求a的值.20.在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.21.已知直線和.(1)若與互相垂直,求實數(shù)的值;(2)若與互相平行,求與與間的距離,

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分析:先根據(jù)12時到14時的銷售額為萬元求出總的銷售額,再求10時到11時的銷售額.詳解:設總的銷售額為x,則.10時到11時的銷售額的頻率為1-0.1-0.4-0.25-0.1=0.15.所以10時到11時的銷售額為.故答案為C.點睛:(1)本題主要考查頻率分布直方圖求概率、頻數(shù)和總數(shù),意在考查學生對這些基礎知識的掌握水平.(2)在頻率分布直方圖中,所有小矩形的面積和為1,頻率=.2、C【解析】

設過點A(4,1)的直線方程為y-1=k(x-4)(k≠0),令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=,∴所求直線方程為x+y-5=0或x-4y=0.故選C.3、D【解析】

選取向量為基底,用基底表示,然后計算.【詳解】由題意,,.故選D.【點睛】本題考查向量的數(shù)量積,平面向量的線性運算,解題關鍵是選取基底,把向量用基底表示.4、D【解析】

根據(jù)直線方程,分類討論求得直線的斜率的取值范圍,進而根據(jù)傾斜角和斜率的關系,即可求解,得到答案.【詳解】由題意,可得當時,直線方程為,此時傾斜角為;當時,直線方程化為,則斜率為:,即,又由,解得或,又由且,所以傾斜角的范圍為,顯然A,B都符合,只有D不符合,故選D.【點睛】本題主要考查了直線方程的應用,以及直線的傾斜角和斜率的關系,著重考查了分類討論思想,以及推理與運算能力.5、C【解析】

利用向量平行的性質(zhì)直接求解.【詳解】向量,,共線,,解得實數(shù).故選:.【點睛】本題主要考查向量平行的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.6、B【解析】

利用余弦定理化簡后可得,再利用正弦定理把邊角關系化為角的三角函數(shù)的關系式,從而得到,因此,結合的范圍可得所求的取值范圍.【詳解】,因為為銳角三角形,所以,,,故,選B.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉(zhuǎn)化為角的關系式或邊的關系式.7、C【解析】

根據(jù)正弦定理,代入即可求解.【詳解】因為中,,,由正弦定理可知代入可得故選:C【點睛】本題考查了正弦定理在解三角形中的應用,屬于基礎題.8、A【解析】

根據(jù),可得,再根據(jù)基本不等式取等的條件可得答案.【詳解】因為,所以,即,即,又(當且僅當時等號成立)所以,所以.故選:A【點睛】本題考查了余弦函數(shù)的值域,考查了基本不等式取等的條件,屬于中檔題.9、A【解析】

連接交于點,連接,證明平面,進而可得到即是直線與平面所成角,根據(jù)題中數(shù)據(jù)即可求出結果.【詳解】連接交于點,因為平面,底面是正方形,所以,,因此平面;故平面;連接,則即是直線與平面所成角,又因,所以,.所以,所以.故選A【點睛】本題主要考查線面角的求法,在幾何體中作出線面角,即可求解,屬于常考題型.10、C【解析】

求出函數(shù)的圖象分別向左平移個單位,向右平移個單位后的函數(shù)解析式,再根據(jù)其圖象與函數(shù)的圖象重合,可分別得關于,的方程,解之即可.【詳解】解:將函數(shù)的圖象向左平移個單位,得函數(shù),其圖象與的圖象重合,,,,故,,,當時,取得最小值為.將函數(shù)的圖象向右平移個單位,得到函數(shù),其圖象與的圖象重合,,,,故,,當時,取得最小值為,的最小值為,故答案為:.【點睛】本題主要考查誘導公式,函數(shù)的圖象變換規(guī)律,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、④【解析】試題分析:根據(jù)線面平行的判定定理,面面平行的判定定理,面面平行的性質(zhì)定理,及面面垂直的性質(zhì)定理,對題目中的四個結論逐一進行分析,即可得到答案.解:當m∥n,n?α,,則m?α也可能成立,故①錯誤;當m?α,n?α,m∥β,n∥β,m與n相交時,α∥β,但m與n平行時,α與β不一定平行,故②錯誤;若α∥β,m?α,n?β,則m與n可能平行也可能異面,故③錯誤;若α⊥β,α∩β=m,n?α,n⊥m,由面面平行的性質(zhì),易得n⊥β,故④正確故答案為④考點:本題考查的知識點是平面與平面之間的位置關系,直線與平面之間的位置關系.點評:熟練掌握空間線與線,線與面,面與面之間的關系的判定方法及性質(zhì)定理,是解答本題的關鍵,屬于基礎題.12、1【解析】

f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,進而得出.【詳解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,當x=2時,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案為:1.【點睛】本題考查了秦九韶算法,考查了推理能力與計算能力,屬于基礎題.13、1【解析】

根據(jù)等比中項定義得出的關系,然后用“1”的代換轉(zhuǎn)化為可用基本不等式求最小值.【詳解】由題意,所以,所以,當且僅當,即時等號成立.所以最小值為1.故答案為:1.【點睛】本題考查等比中項的定義,考查用基本不等式求最值.解題關鍵是用“1”的代換找到定值,從而可用基本不等式求最值.14、【解析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應用.【方法點晴】本題主要考查了正弦定理的應用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.15、1.98.【解析】

本題考查通過統(tǒng)計數(shù)據(jù)進行概率的估計,采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點數(shù)約為,其中高鐵個數(shù)為11+21+11=41,所以該站所有高鐵平均正點率約為.【點睛】本題考點為概率統(tǒng)計,滲透了數(shù)據(jù)處理和數(shù)學運算素養(yǎng).側重統(tǒng)計數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計數(shù)據(jù),估算出正點列車數(shù)量與列車總數(shù)的比值.16、【解析】

根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側面和上表面到D1的路程最短為故答案為:.【點睛】本題主要考查了空間幾何體展形圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析【解析】

(Ⅰ)取PC的中點G,連結FG、EG,AF∥EG又EG?平面PCE,AF?平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需證明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【詳解】證明:(Ⅰ)取PC的中點G,連結FG、EG,∴FG為△CDP的中位線,F(xiàn)G∥CD,F(xiàn)G=CD.∵四邊形ABCD為矩形,E為AB的中點,∴AE∥CD,AE=CD.∴FG=AE,F(xiàn)G∥AE,∴四邊形AEGF是平行四邊形,∴AF∥EG又EG?平面PCE,AF?平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因為CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG?平面PCE,∴平面PEC⊥平面PCD.【點睛】本題考查了空間線面平行、面面垂直的判定,屬于中檔題.18、(1);(2).【解析】

(1)利用余弦函數(shù)的單調(diào)性列出不等式直接求的單調(diào)遞增區(qū)間.(2)利用正弦函數(shù)的單調(diào)遞減區(qū)間,直接求解,的單調(diào)遞減區(qū)間.【詳解】解:(1)由,,可得,,函數(shù)的單調(diào)遞增區(qū)間:,.(2)因為,;可得,.時,.函數(shù),的單調(diào)遞減區(qū)間:.【點睛】本題考查三角函數(shù)的單調(diào)性的求法,考查學生的計算能力,屬于基礎題.19、(1)證明見解析(1)1【解析】

(1)運用函數(shù)的奇偶性的定義即可得證(1)由題意可得有且只有兩個相等的實根,可得判別式為0,解方程可得所求值.【詳解】(1)證明:由函數(shù),,可得定義域為,且,可得為奇函數(shù);(1)方程只有一個實數(shù)解,即為,即△,解得舍去),則的值為1.【點睛】本題考查函數(shù)的奇偶性的判斷和二次方程有解的條件,考查方程思想和定義法,屬于基礎題.20、(1)(2)【解析】

(1)利用等差數(shù)列的性質(zhì)可求出,進而可求出的通項公式;(2),由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論