考察思維能力的面試題_第1頁
考察思維能力的面試題_第2頁
考察思維能力的面試題_第3頁
考察思維能力的面試題_第4頁
考察思維能力的面試題_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

考察思維能力的面試題

無論是學生的學習活動,還是人類的一切發(fā)明創(chuàng)造活動,都離不開思維,思維能力是學習能力的核心。對思維能力可以通過一些題目來考察。下面是小編整理的考察思維能力的題相關資料,一起來看看吧!考察思維能力的題

1假設有一個池塘,里面有無窮多的水?,F(xiàn)有2個空水壺,容積分別為5升和6升。問題是如何只用這2個水壺從池塘里取得3升的水。

答案:veryeasy,5+56+56=3

2周雯的媽媽是豫林水泥廠的化驗員。一天,周雯來到化驗室做作業(yè)。做完后想出去玩。"等等,媽媽還要考你一個題目,"她接著說,"你看這6只做化驗用的玻璃杯,前面3只盛滿了水,后面3只是空的。你能只移動1只玻璃杯,就便盛滿水的杯子和空杯子間隔起來嗎?"愛動腦筋的周雯,是學校里有名的"小機靈",她只想了一會兒就做到了。請你想想看,"小機靈"是怎樣做的?

答案:2倒5

3三個小伙子同時愛上了一個姑娘,為了決定他們誰能娶這個姑娘,他們決定用手槍進行一次決斗。小李的命中率是30%,小黃比他好些,命中率是50%,最出色的槍手是小林,他從不失誤,命中率是100%。由于這個顯而易見的事實,為公平起見,他們決定按這樣的順序:小李先開槍,小黃第二,小林最后。然后這樣循環(huán),直到他們只剩下一個人。那么這三個人中誰活下來的機會最大呢?他們都應該采取什么樣的策略?

答案:thinking……

4一間囚房里關押著兩個犯人。每天監(jiān)獄都會為這間囚房提供一罐湯,讓這兩個犯人自己來分。起初,這兩個人經(jīng)常會發(fā)生爭執(zhí),因為他們總是有人認為對方的湯比自己的多。后來他們找到了一個兩全其美的辦法:一個人分湯,讓另一個人先選。于是爭端就這么解決了??墒?,現(xiàn)在這間囚房里又加進來一個新犯人,現(xiàn)在是三個人來分湯。必須尋找一個新的方法來維持他們之間的和平。該怎么辦呢?

答案:按:心理問題,不是邏輯問題

甲分,乙、丙挑,余一給甲。乙、丙混湯,再按二人法分??疾爝壿嬎季S能力的趣味題目

傳說是當年莫斯科與列寧格勒兩城市小學生智力對抗賽的題目。對抗賽中此類的題目非常多,可惜我們現(xiàn)在的奧數(shù)卻沒有這類題目。估計這類題目無法總結出規(guī)律性的東西,讓孩子照葫蘆畫瓢,所以就沒有了。有的是諸如雞兔同籠這類可以有算法的題目。

孩子沒事時可以讓他們玩玩。

帽子顏色問題

有3頂紅帽子,2頂黃帽子。測試人員共3位。裁判讓3個人從矮到高縱向站成一隊,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。

裁判問最后一位:“你是否知道自己帶的帽子的顏色?”,

回答:“不知道”,

然后問中間這位同樣問題,回答仍然是不知道,

最后問最前面的那位,這位說:“知道”。

(所有的問答,3位測試人員都能聽見)

問:最前面這位所帶帽子顏色是什么,為什么?

老虎過河

三個人,一個大老虎和二個小老虎,在河的同一邊。河邊有一艘船,船一次最多裝載兩位(人或虎),人和大老虎會劃船,小老虎不會。無論在船上還是岸上,老虎的數(shù)量都不能超過人數(shù),否則就會吃人。

問:如何將老虎和人都渡過河去?

瓶子分油

甲乙兩位去打油,甲有一個5斤油瓶,乙有一個3斤油瓶,共打回來8斤油。甲和乙都只需要4斤油。乙有一個10斤的空油瓶。

如何利用這只空油瓶,倒來倒去讓甲的5斤油瓶里只裝4斤油回家?

(注所有油瓶均無刻度。)

天平稱球

12只乒乓球,其中1只是壞的(壞的定義為重量與好的不一樣),用天平稱3次,將壞球挑出,并且得出壞球是輕還是重?

此題很難,不是小學生能夠做出的,高中生用一天的時間做出就很了不起了。

藍墨水與紅墨水

2個10升的試瓶中分別盛裝了5升藍墨水與紅墨水。用一個5毫升的勺從紅墨水試瓶中舀出5毫升的紅墨水,將其到入到藍墨水試瓶中,攪拌后再出藍墨水試瓶中舀出5毫升的墨水,將其到入到紅墨水試瓶中。

問:紅墨水試瓶含藍墨水多,還是藍墨水試瓶含紅墨水多?如何鍛煉數(shù)學解題思維能力

第一,從求解(證)入手——尋找解題途徑的基本方法

遇到有一定難度的考題我們會發(fā)現(xiàn)出題者設置了種種障礙。從已知出發(fā),岔路眾多,順推下去越做越復雜,難得到答案,如果從問題入手,尋找要想獲得所求,必須要做什么,找到“需知”后,將“需知”作為新的問題,直到與“已知“所能獲得的“可知”相溝通,將問題解決。事實上,在不等式證明中采用的“分析法”就是這種思維的充分體現(xiàn),我們將這種思維稱為“逆向思維”——必要性思維。

第二,數(shù)學式子變形——完成解題過程的關鍵

解答高考數(shù)學試題遇到的第二障礙就是數(shù)學式子變形。一道數(shù)學綜合題,要想完成從已知到結論的過程,必須經(jīng)過大量的數(shù)學式子變形,而這些變形僅靠大量的做題過程是無法真正完全掌握的,很多考生都有這樣的經(jīng)歷,在解一道復雜的考題時,做不下去了,而回過頭來再看一看答案,才恍然大悟,解法這么簡單,后悔莫及,埋怨自己怎么糊涂到?jīng)]有把式子再這么變一下呢?

其實數(shù)學解題的每一步推理和運算,實質都是轉換(變形).但是,轉換(變形)的目的是更好更快的解題,所以變形的方向必定是化繁為簡,化抽象為具體,化未知為已知,也就是創(chuàng)造條件向有利于解題的方向轉化.還必須注意的是,一切轉換必須是等價的,否則解答將出現(xiàn)錯誤。

解決數(shù)學問題實際上就是在題目的已知條件和待求結論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。尋找差異是變形依賴的原則,變形中一些規(guī)律性的東西需要總結。在后面的幾章中我們列舉的一些思維定勢,就是在數(shù)學思想指導下總結出來的。在解答高考題中時刻都在進行數(shù)學變形由復雜到簡單,這也就是轉化,數(shù)學式子變形的思維方式:時刻關注所求與已知的差異。

第三、回歸課本---夯實基礎。

1)揭示規(guī)律----掌握解題方法

高考試題再難也逃不了課本揭示的思維方法及規(guī)律。我們說回歸課本,不是簡單的梳理知識點。課本中定理,公式推證的過程就蘊含著重要的方法,而很多考生沒有充分暴露思維過程,沒有發(fā)覺其內在思維的規(guī)律就去解題,而希望通過題海戰(zhàn)術去“悟”出某些道理,結果是題海沒少泡,卻總也不見成效,最終只能留在理解的膚淺,僅會機械的模仿,思維水平低的地方。因此我們要側重基本概念,基本理論的剖析,達到以不變應萬變。

2)構建網(wǎng)絡----融會貫通

在課本函數(shù)這章里,有很多重要結論,許多學生由于理解不深入,只靠死記硬背,最后造成記憶不牢,考試時失分。

例如:

若f(x+a)=f(b-x)則f(x)關于對稱。如何理解?我們令x1=a+x,x2=b-x,則f(x1)=f(x2),x1+x2=a+b,=常數(shù),即兩自變量之和是定值,它們對應的函數(shù)值相等,這樣就理解了對稱的本質。結合解析幾何中的中點坐標的橫坐標為定值,或用特殊函數(shù),二次函數(shù)的圖像,記憶這個結論就很簡單了,只要x1+x2=a+b,=常數(shù)f(x1)=f(x2),它可以寫成許多形式如f(x)=f(a+b-x).同樣關于點對稱,則f(x1)+f(x2)=b,x1+x2=a(中點坐標橫縱座標都為定值),關于(a/2,b/2)對稱。

再如若f(x)=f(2a-x),f(x)=(2b-x),則f(x)的周期為T=2|a-b||如何理解記憶這個結論,我們類比三角函數(shù)f(x)=sinx從正弦函數(shù)圖形中我們可知x=/2,x=3/2為兩個對稱軸,2|3/2-/2|=2,而得周期為,這樣我們就很容易記住這一結論,即使在考場上,思維斷路,只要把圖一畫,就可寫出這一結論。這就是抽象到具體與數(shù)形結合的思想的體現(xiàn)。思想提煉總結在復習過程中起著關鍵作用。類似的結論f(x)關于點A(a,0)及B(b,0)對稱則f(x)周期T=2|b-a|,若f(x)關于A(a,0)及x=b對稱,則f(x)周期T=4|b-a|。

這樣我們就在函數(shù)這章做到由厚到薄,無需死記什么內容了,同時我們還要學會這些結論的逆用。

例:兩對稱軸x=a,x=b當b=2a(b>a)則為偶函數(shù).同樣以對稱點B(B,0),對稱軸X=a,b=2a是為奇函數(shù).

3)加強理解----提升能力

復習要真正的回到重視基礎的軌道上來。沒有基礎談不到不到能力。這里的基礎不是指機械重復的訓練,而是指要搞清基本原理,基本方法,體驗知識形成過程以及對知識本質意義的理解與感悟。只有深刻理解概念,才能抓住問題本質,構建知識網(wǎng)絡。

4)思維模式化----解題步驟固定化

解答數(shù)學試題有一定的規(guī)律可循,解題操作要有明確的思路和目標,要做到思維模式化。所謂模式化也就是解題步驟固定化,一般思維過程分為以下步驟:

A、審題

審題的關鍵是,首先弄清要求(證)的是什么?已知條件是什么?結論是什么?條件的表達方式是否能轉換(數(shù)形轉換,符號與圖形的轉換,文字表達轉為數(shù)學表達等),所給圖形和式子有什么特點?能否用一個圖形(幾何的、函數(shù)的或示意的)或數(shù)學式子(對文字題)將問題表達出來?有什么隱含條件?由已知條件能推得哪些可知事項和條件?要求未知結論,必須做什么?需要知道哪些條件(需知)?

B、明確解題目標.關注已知與所求的差距,進行數(shù)學式子變形(轉化),在需知與可知間架橋(缺什么補什么)

1)能否將題中復雜的式子化簡?

2)能否對條件進行劃分,將大問題化為幾個小問題?

3)能否進行變量替換(換元)、恒等變換,將問題的形式變得較為明顯一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論