湖南省十四校2024年高二數(shù)學第一學期期末考試試題含解析_第1頁
湖南省十四校2024年高二數(shù)學第一學期期末考試試題含解析_第2頁
湖南省十四校2024年高二數(shù)學第一學期期末考試試題含解析_第3頁
湖南省十四校2024年高二數(shù)學第一學期期末考試試題含解析_第4頁
湖南省十四校2024年高二數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省十四校2024年高二數(shù)學第一學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.2.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件3.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.4.已知數(shù)列滿足,,令,若對于任意不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.5.曲線在處的切線的傾斜角是()A. B.C. D.6.下列命題中正確的是A.命題“若,則”的否命題為:“若,則”B.若命題,是假命題,則實數(shù)C.“”的一個充分不必要條件是“”D.命題“若,則”的逆否命題為真命題7.若函數(shù)在定義域上單調(diào)遞增,則實數(shù)的取值范圍為()A. B.C. D.8.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D9.已知復數(shù)滿足(其中為虛數(shù)單位),則復數(shù)的虛部為()A. B.C. D.10.宋元時期數(shù)學名著《算學啟蒙》中有關(guān)于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.211.已知直線與直線平行,且直線在軸上的截距比在軸上的截距大,則直線的方程為()A. B.C. D.12.已知p、q是兩個命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題二、填空題:本題共4小題,每小題5分,共20分。13.已知點,是橢圓內(nèi)的兩個點,M是橢圓上的動點,則的最大值為______14.若拋物線的焦點與橢圓的右焦點重合,則實數(shù)m的值為______.15.某次實驗得到如下7組數(shù)據(jù),通過判斷知道與具有線性相關(guān)性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.816.在遞增等比數(shù)列中,其前項和,若,,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,過焦點的直線l交拋物線C于M、N兩點,且線段中點的縱坐標為2(1)求直線l的方程;(2)設(shè)x軸上關(guān)于y軸對稱的兩點P、Q,(其中P在Q的右側(cè)),過P的任意一條直線交拋物線C于A、B兩點,求證:始終被x軸平分18.(12分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前n項和19.(12分)已知拋物線E:y2=8x(1)求拋物線的焦點及準線方程;(2)過點P(-1,1)的直線l1與拋物線E只有一個公共點,求直線l1的方程;(3)過點M(2,3)的直線l2與拋物線E交于點A,B.若弦AB的中點為M,求直線l2的方程20.(12分)某公園有一形狀可抽象為圓柱的標志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側(cè)有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監(jiān)控范圍內(nèi)?(2)求觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度21.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.22.(10分)已知函數(shù)(1)討論的單調(diào)性;(2)當時,證明

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點即可求解.【題目詳解】漸近線方程是,設(shè)雙曲線方程為,又因為雙曲線經(jīng)過點,所以有,所以雙曲線方程為,化為標準方程為.故選:A2、B【解題分析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【題目詳解】當時,,非充分,故A錯.當不能推出,所以非充分,,所以是必要條件,故B正確.當在中,,反之,故為充要條件,故C錯;當時,,,,充分條件,因為,當時成立,非必要條件,故D錯.故選:B.3、D【解題分析】計算出每月應還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【題目詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D4、D【解題分析】根據(jù)遞推關(guān)系,利用裂項相消法,累加法求出,可得,原不等式轉(zhuǎn)化為恒成立求解即可.【題目詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D5、D【解題分析】求出函數(shù)的導數(shù),再求出并借助導數(shù)的幾何意義求解作答.【題目詳解】由求導得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D6、C【解題分析】.命題的否定是同時否定條件和結(jié)論;.將當成真命題解出的范圍,再取補集即可;.求出“”的充要條件再判斷即可;.判斷原命題的真假即可【題目詳解】解:對于A:命題“若,則”的否命題為:“若,則“,故A錯誤;對于B:當命題,是真命題時,,所以,又因為命題為假命題,所以,故B錯誤;對于C:由“”解得:,故“”是“”的充分不必要條件,故C正確;對于D:因為命題“若,則”是假命題,所以其逆否命題也是假命題,故D錯誤;故選:C7、D【解題分析】函數(shù)在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【題目詳解】函數(shù)的定義域為,,在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【題目點撥】方法點睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.8、A【解題分析】由已知,分別表示出選項對應的向量,然后利用平面向量共線定理進行判斷即可完成求解.【題目詳解】因,,,選項A,,,若A,B,D三點共線,則,即,解得,故該選項正確;選項B,,,若A,B,C三點共線,則,即,解得不存,故該選項錯誤;選項C,,,若B,C,D三點共線,則,即,解得不存在,故該選項錯誤;選項D,,,若A,C,D三點共線,則,即,解得不存在,故該選項錯誤;故選:A.9、A【解題分析】由題目條件可得,即,然后利用復數(shù)的運算法則化簡.【題目詳解】因為,所以,則故復數(shù)的虛部為.故選:A.【題目點撥】本題考查復數(shù)的相關(guān)概念及復數(shù)的乘除運算,按照復數(shù)的運算法則化簡計算即可,較簡單.10、B【解題分析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案【題目詳解】解:當n=1時,a=3,b=2,滿足進行循環(huán)的條件,當n=2時,a,b=4,滿足進行循環(huán)的條件,當n=3時,a,b=8,滿足進行循環(huán)的條件,當n=4時,a,b=16,不滿足進行循環(huán)的條件,故輸出的n值為4,故選:B【題目點撥】本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答11、A【解題分析】分析可知直線不過原點,可設(shè)直線的方程為,其中且,利用斜率關(guān)系可求得實數(shù)的值,化簡可得直線的方程.【題目詳解】若直線過原點,則直線在兩坐標軸上的截距相等,不合乎題意,設(shè)直線的方程為,其中且,則直線的斜率為,解得,所以,直線的方程為,即.故選:A.12、D【解題分析】由已知可得¬p,q都是假命題,從而可分析判斷各選項【題目詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解題分析】結(jié)合橢圓的定義求得正確答案.【題目詳解】依題意,橢圓方程為,所以,所以是橢圓的右焦點,設(shè)左焦點為,根據(jù)橢圓的定義可知,,所以的最大值為.故答案為:14、【解題分析】分別求出橢圓和拋物線的焦點坐標即可出值.【題目詳解】由橢圓方程可知,,,則,即橢圓的右焦點的坐標為,拋物線的焦點坐標為,∵拋物線的焦點與橢圓的右焦點重合,∴,即,故答案為:.15、9##【解題分析】求得樣本中心點的坐標,代入回歸直線,即可求得.詳解】根據(jù)表格數(shù)據(jù)可得:故,解得.故答案為:.16、【解題分析】根據(jù)等比數(shù)列下標和性質(zhì)得到,從而解出、,即可求出公比,從而求出,,即可得解;【題目詳解】解:因為,所以,因為,所以、為方程的兩根,所以或,因為為遞增的等比數(shù)列,所以,所以所以或(舍去),所以,,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解題分析】(1)設(shè)直線l的方程為:,聯(lián)立方程,利用韋達定理可得結(jié)果;(2)設(shè),借助韋達定理表示,即可得到結(jié)果.【題目詳解】(1)由已知可設(shè)直線l的方程為:,聯(lián)立方程組可得,設(shè),則又因為,得,故直線l的方程為:即為;(2)由題意可設(shè),可設(shè)過P的直線為聯(lián)立方程組可得,顯然設(shè),則所以所以始終被x軸平分18、(1)證明見解析;;(2).【解題分析】(1)根據(jù)等差數(shù)列的定義證明為常數(shù)即可;(2)利用錯位相減法即可求和.【小問1詳解】由得,,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,∴,∴;【小問2詳解】①,②,①-②得:,.19、(1)焦點為(2,0),準線方程為x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解題分析】(1)根據(jù)拋物線的方程及其幾何性質(zhì),求焦點和準線;(2)分直線l1的斜率為0和不為0兩種情況,根據(jù)直線與拋物線只有一個公共點,由直線與x軸平行或Δ=0,得解;(3)利用點差法求出直線l2的斜率,即可得直線l2的方程【小問1詳解】由題意,p=4,則焦點為(2,0),準線方程為x=-2【小問2詳解】當直線l1的斜率為0時,y=1;當直線l1的斜率不為0時,設(shè)直線l1為x+1=m(y-1),聯(lián)立,得y2-8my+8m+8=0,因為直線l1與拋物線E只有一個公共點,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直線l1的方程為x-y+2=0或2x+y+1=0,綜上,直線l1為y=1或x-y+2=0或2x+y+1=0【小問3詳解】由題意,直線l2的斜率一定存在,設(shè)其斜率為k,A(x1,y1),B(x2,y2),則8x1,8x2,兩式作差得:8(x1-x2),即k,所以直線l2為y-3(x-2),即4x-3y+1=020、(1)不在(2)17.5米【解題分析】(1)以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標系,求出直線AB方程,判斷直線AB與圓O的位置關(guān)系即可;(2)攝像頭監(jiān)控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標系則,觀景直道所在直線的方程為依題意得:游客所在點為則直線AB的方程為,化簡得,所以圓心O到直線AB的距離,故直線AB與圓O相交,所以游客不在該攝像頭監(jiān)控范圍內(nèi).【小問2詳解】由圖易知:過點A的直線l與圓O相切或相離時,攝像頭監(jiān)控不會被建筑物遮擋,所以設(shè)直線l過A且恰與圓O相切,①若直線l垂直于x軸,則l不可能與圓O相切;②若直線l不垂直于x軸,設(shè),整理得所以圓心O到直線l的距離為,解得或,所以直線l的方程為或,即或,設(shè)這兩條直線與交于D,E由,解得,由,解得,所以,觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度為17.5米.21、(1)(2)【解題分析】(1)建立如圖所示的空間直角坐標系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標原點,射線方向為x,y,z軸正方向建立空間直角坐標系.當時,,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.22、(1)答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論