江蘇省蘇州市草橋中學(xué)2022年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第1頁
江蘇省蘇州市草橋中學(xué)2022年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第2頁
江蘇省蘇州市草橋中學(xué)2022年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第3頁
江蘇省蘇州市草橋中學(xué)2022年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第4頁
江蘇省蘇州市草橋中學(xué)2022年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.102.如果關(guān)于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..3.某校九年級(1)班學(xué)生畢業(yè)時,每個同學(xué)都將自己的相片向全班其他同學(xué)各送一張留作紀念,全班共送了1980張相片,如果全班有x名學(xué)生,根據(jù)題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19804.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近5.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.6.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π7.如圖是由6個完全相同的小長方體組成的立體圖形,這個立體圖形的左視圖是()A. B.C. D.8.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=19.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當(dāng)G1與G2有公共點時,y1隨x增大而減??;②當(dāng)G1與G2沒有公共點時,y1隨x增大而增大;③當(dāng)k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準(zhǔn)確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確10.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設(shè)OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,是由一些小立方塊所搭幾何體的三種視圖,若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個大正方體,至少還需要________個小立方塊.12.如圖所示,直線y=x+b交x軸A點,交y軸于B點,交雙曲線于P點,連OP,則OP2﹣OA2=__.13.若關(guān)于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當(dāng)m=1、2、3、…、2018時,相應(yīng)的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.14.已知關(guān)于x的方程x2-23x-k=0有兩個相等的實數(shù)根,則k的值為__________.15.若分式的值為正,則實數(shù)的取值范圍是__________________.16.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當(dāng)CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤三、解答題(共8題,共72分)17.(8分)為了響應(yīng)“足球進校園”的目標(biāo),某校計劃為學(xué)校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.18.(8分)計算:+(﹣)﹣1+|1﹣|﹣4sin45°.19.(8分)如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:①分別以點A、B為圓心,以大于12AB的長為半徑作弧,兩弧分別相交于點P、Q②作直線PQ分別交邊AB、BC于點E、D.小明所求作的直線DE是線段AB的;聯(lián)結(jié)AD,AD=7,sin∠DAC=17,BC=9,求AC20.(8分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長21.(8分)如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.22.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(-3,m+8),B(n,-6)兩點.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)求△AOB的面積.23.(12分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.24.如圖,在梯形中,,,,,點為邊上一動點,作⊥,垂足在邊上,以點為圓心,為半徑畫圓,交射線于點.(1)當(dāng)圓過點時,求圓的半徑;(2)分別聯(lián)結(jié)和,當(dāng)時,以點為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點,試通過計算說明線段和的比值為定值,并求出次定值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.2、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.3、D【解析】

根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,∴全班共送:(x﹣1)x=1980,故選D.【點睛】此題主要考查了一元二次方程的應(yīng)用,本題要注意讀清題意,弄清楚每人要贈送(x﹣1)張相片,有x個人是解決問題的關(guān)鍵.4、D【解析】

根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.5、D【解析】

由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當(dāng)△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關(guān)鍵.6、B【解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點睛】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.7、B【解析】

根據(jù)題意找到從左面看得到的平面圖形即可.【詳解】這個立體圖形的左視圖是,

故選:B.【點睛】本題考查了簡單組合體的三視圖,解題的關(guān)鍵是掌握左視圖所看的位置.8、B【解析】試題分析:根據(jù)作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.9、D【解析】

畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據(jù)k的正負與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個選項分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當(dāng)G1與G2有公共點時,y1隨x增大而減??;故①正確;當(dāng)G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當(dāng)k>0時,此時y1隨x增大而增大,符合題意,故②正確;當(dāng)k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問題,需要數(shù)形結(jié)合,結(jié)合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.10、C【解析】如下圖,設(shè)⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、54【解析】試題解析:由主視圖可知,搭成的幾何體有三層,且有4列;由左視圖可知,搭成的幾何體共有3行;第一層有7個正方體,第二層有2個正方體,第三層有1個正方體,共有10個正方體,∵搭在這個幾何體的基礎(chǔ)上添加相同大小的小正方體,以搭成一個大正方體,∴搭成的大正方體的共有4×4×4=64個小正方體,∴至少還需要64-10=54個小正方體.【點睛】先由主視圖、左視圖、俯視圖求出原來的幾何體共有10個正方體,再根據(jù)搭成的大正方體的共有4×4×4=64個小正方體,即可得出答案.本題考查了學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查,關(guān)鍵是求出搭成的大正方體共有多少個小正方體.12、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點P,設(shè)P點的坐標(biāo)(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.13、.【解析】

利用根與系數(shù)的關(guān)系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數(shù)的關(guān)系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.14、-3【解析】試題解析:根據(jù)題意得:△=(23)2-4×1×(-k)=0,即12+4k=0,

解得:k=-3,15、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關(guān)鍵.16、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當(dāng)∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當(dāng)∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當(dāng)△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結(jié)論為:②③.考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).三、解答題(共8題,共72分)17、(1)一個A品牌的足球需90元,則一個B品牌的足球需100元;(2)1.【解析】

(1)設(shè)一個A品牌的足球需x元,則一個B品牌的足球需y元,根據(jù)“購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數(shù)據(jù)代入求值即可.【詳解】(1)設(shè)一個A品牌的足球需x元,則一個B品牌的足球需y元,依題意得:,解得:.答:一個A品牌的足球需40元,則一個B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個A品牌的足球和2個B品牌的足球的總費用是1元.考點:二元一次方程組的應(yīng)用.18、【解析】

根據(jù)絕對值的概念、特殊三角函數(shù)值、負整數(shù)指數(shù)冪、二次根式的化簡計算即可得出結(jié)論.【詳解】解:+(﹣)﹣1+|1﹣|﹣1sin15°=2﹣3+﹣1﹣1×=2﹣3+﹣1﹣2=﹣1.【點睛】此題主要考查了實數(shù)的運算,負指數(shù),絕對值,特殊角的三角函數(shù),熟練掌握運算法則是解本題的關(guān)鍵.19、(1)線段AB的垂直平分線(或中垂線);(2)AC=53.【解析】

(1)垂直平分線:經(jīng)過某一條線段的中點,并且垂直于這條線段的直線,叫做這條線段的垂直平分線(2)根據(jù)題意垂直平分線定理可得AD=BD,得到CD=2,又因為已知sin∠DAC=17【詳解】(1)小明所求作的直線DE是線段AB的垂直平分線(或中垂線);故答案為線段AB的垂直平分線(或中垂線);(2)過點D作DF⊥AC,垂足為點F,如圖,∵DE是線段AB的垂直平分線,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【點睛】本題考查了垂直平分線的尺規(guī)作圖方法,三角函數(shù)和勾股定理求線段長度,解本題的關(guān)鍵是充分利用中垂線,將已知條件與未知條件結(jié)合起來解題.20、(1)見解析;(2)PE=4.【解析】

(1)根據(jù)同角的余角相等得到∠ACD=∠B,然后由圓周角定理可得結(jié)論;(2)連結(jié)OE,根據(jù)圓周角定理和等腰三角形的性質(zhì)證明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【詳解】解:(1)證明:∵BC是⊙O的直徑,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)證明:連結(jié)OE∵E為BD弧的中點.∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴∵PB=BO,DE=2∴PB=BO=OC∴∴∴PE=4【點睛】本題是圓的綜合題,主要考查了圓周角定理、等腰三角形的判定和性質(zhì)、相似三角形的判定與性質(zhì),熟練掌握圓的相關(guān)知識和相似三角形的性質(zhì)是解題的關(guān)鍵.21、(1)證明見解析;(2)證明見解析;(3)1.【解析】

(1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對應(yīng)角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;

(2)由一對直角相等,一對公共角,得出三角形AOD與三角形OAP相似,由相似得比例,列出關(guān)系式,由OA為EF的一半,等量代換即可得證.【詳解】(1)連接OB,

∵PB是⊙O的切線,

∴∠PBO=90°.

∵OA=OB,BA⊥PO于D,

∴AD=BD,∠POA=∠POB.

又∵PO=PO,

∴△PAO≌△PBO.

∴∠PAO=∠PBO=90°,

∴直線PA為⊙O的切線.(2)由(1)可知,,,,=90,,,,即,是直徑,是半徑,,,整理得;(3)是中點,是中點,是的中位線,,,,是直角三角形,在中,,,,,,則,、是半徑,,在中,,,由勾股定理得:,即,解得:或(舍去),,.【點睛】本題考查了切線的判定與性質(zhì),相似及全等三角形的判定與性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.22、(1)y=-,y=-2x-4(2)1【解析】

(1)將點A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點A的坐標(biāo)以及反比例函數(shù)解析式,再將點B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;(2)設(shè)AB與x軸相交于點C,根據(jù)一次函數(shù)解析式求出點C的坐標(biāo),從而得到點OC的長度,再根據(jù)S△AOB=S△AOC+S△BOC列式計算即可得解.【詳解】(1)將A(﹣3,m+1)代入反比例函數(shù)y=得,=m+1,解得m=﹣6,m+1=﹣6+1=2,所以,點A的坐標(biāo)為(﹣3,2),反比例函數(shù)解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標(biāo)為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數(shù)解析式為y=﹣2x﹣4;(2)設(shè)AB與x軸相交于點C,令﹣2x﹣4=0解得x=﹣2,所以,點C的坐標(biāo)為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=1.考點:反比例函數(shù)與一次函數(shù)的交點問題.23、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結(jié)論;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,

∴AM=AP?cos30°=3,同理AN=3,

∴AE+AF=(AM-EM)+(AN+NF)=6.【點睛】運用了菱形的性質(zhì),解直角三角形,全等三角形的判

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論