貴州省遵義市桐梓縣重點名校2023年初三沖刺診斷考試數(shù)學(xué)試題試卷含解析_第1頁
貴州省遵義市桐梓縣重點名校2023年初三沖刺診斷考試數(shù)學(xué)試題試卷含解析_第2頁
貴州省遵義市桐梓縣重點名校2023年初三沖刺診斷考試數(shù)學(xué)試題試卷含解析_第3頁
貴州省遵義市桐梓縣重點名校2023年初三沖刺診斷考試數(shù)學(xué)試題試卷含解析_第4頁
貴州省遵義市桐梓縣重點名校2023年初三沖刺診斷考試數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

貴州省遵義市桐梓縣重點名校2023年初三沖刺診斷考試數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個2.若一次函數(shù)y=(2m﹣3)x﹣1+m的圖象不經(jīng)過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤3.計算﹣8+3的結(jié)果是()A.﹣11 B.﹣5 C.5 D.114.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.55.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是()A.a(chǎn)≤﹣1 B.﹣2≤a<﹣1 C.a(chǎn)<﹣1 D.﹣2<a≤﹣16.某區(qū)10名學(xué)生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學(xué)生所得分?jǐn)?shù)的平均數(shù)和眾數(shù)分別是()人數(shù)3421分?jǐn)?shù)80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和807.如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當(dāng)線段與線段之差達(dá)到最大時,點的坐標(biāo)是()A. B. C. D.8.矩形具有而平行四邊形不具有的性質(zhì)是()A.對角相等 B.對角線互相平分C.對角線相等 D.對邊相等9.如圖,四個有理數(shù)在數(shù)軸上的對應(yīng)點M,P,N,Q,若點M,N表示的有理數(shù)互為相反數(shù),則圖中表示絕對值最小的數(shù)的點是()A.點M B.點N C.點P D.點Q10.如圖,每個小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.11.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結(jié)AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°12.函數(shù)的自變量x的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設(shè)較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當(dāng)點B的移動距離為時,四邊ABC1D1為矩形;當(dāng)點B的移動距離為時,四邊形ABC1D1為菱形.14.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.15.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當(dāng)天南部地區(qū)比北部地區(qū)的平均氣溫高_(dá)____℃.16.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.17.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標(biāo)原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為18.把直線y=-x+3向上平移m個單位后,與直線y=2x+4的交點在第一象限,則m的取值范圍是_________________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中.20.(6分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請說明理由.21.(6分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.22.(8分)在平面直角坐標(biāo)系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標(biāo)軸的距離之和等于點Q到兩坐標(biāo)軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.(1)已知點A的坐標(biāo)為(﹣3,1),①在點R(0,4),S(2,2),T(2,﹣3)中,為點A的同族點的是;②若點B在x軸上,且A,B兩點為同族點,則點B的坐標(biāo)為;(2)直線l:y=x﹣3,與x軸交于點C,與y軸交于點D,①M為線段CD上一點,若在直線x=n上存在點N,使得M,N兩點為同族點,求n的取值范圍;②M為直線l上的一個動點,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.23.(8分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)24.(10分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關(guān)系,并說明理由;若,,,求線段的長.25.(10分)我國滬深股市交易中,如果買、賣一次股票均需付交易金額的作費用.張先生以每股5元的價格買入“西昌電力”股票1000股,若他期望獲利不低于1000元,問他至少要等到該股票漲到每股多少元時才能賣出?(精確到0.01元)26.(12分)某商場服裝部分為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據(jù)統(tǒng)計的這組銷售額的數(shù)據(jù),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:(1)該商場服裝營業(yè)員的人數(shù)為,圖①中m的值為;(2)求統(tǒng)計的這組銷售額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).27.(12分)海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.2、B【解析】

根據(jù)一次函數(shù)的性質(zhì),根據(jù)不等式組即可解決問題;【詳解】∵一次函數(shù)y=(2m-3)x-1+m的圖象不經(jīng)過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數(shù)的圖象與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.3、B【解析】

絕對值不等的異號加法,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個數(shù)相加得1.依此即可求解.【詳解】解:?8+3=?2.故選B.【點睛】考查了有理數(shù)的加法,在進(jìn)行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有1.從而確定用那一條法則.在應(yīng)用過程中,要牢記“先符號,后絕對值”.4、C【解析】

根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關(guān)鍵.5、B【解析】

根據(jù)“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,-1,∴-2≤a<-1.故選B.【點睛】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.6、B【解析】

根據(jù)眾數(shù)及平均數(shù)的定義,即可得出答案.【詳解】解:這組數(shù)據(jù)中85出現(xiàn)的次數(shù)最多,故眾數(shù)是85;平均數(shù)=(80×3+85×4+90×2+95×1)=85.5.故選:B.【點睛】本題考查了眾數(shù)及平均數(shù)的知識,掌握各部分的概念是解題關(guān)鍵.7、D【解析】

求出AB的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當(dāng)P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點坐標(biāo)即可.【詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關(guān)系定理得:,延長交軸于,當(dāng)在點時,,即此時線段與線段之差達(dá)到最大,設(shè)直線的解析式是,把,的坐標(biāo)代入得:,解得:,直線的解析式是,當(dāng)時,,即,故選D.【點睛】本題考查了三角形的三邊關(guān)系定理和用待定系數(shù)法求一次函數(shù)的解析式的應(yīng)用,解此題的關(guān)鍵是確定P點的位置,題目比較好,但有一定的難度.8、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對邊相等且平行,②矩形的對角相等,且都是直角,③矩形的對角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對邊分別相等且平行,②平行四邊形的對角分別相等,③平行四邊形的對角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對角線相等,故選C.9、C【解析】試題分析:∵點M,N表示的有理數(shù)互為相反數(shù),∴原點的位置大約在O點,∴絕對值最小的數(shù)的點是P點,故選C.考點:有理數(shù)大小比較.10、B【解析】

根據(jù)相似三角形的判定方法一一判斷即可.【詳解】解:因為中有一個角是135°,選項中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點睛】本題考查相似三角形的性質(zhì),解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考??碱}型.11、D【解析】

根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質(zhì)和平行四邊形的性質(zhì)可得解.【詳解】根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質(zhì)可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質(zhì)、圓的基本性質(zhì).12、D【解析】

根據(jù)二次根式的意義,被開方數(shù)是非負(fù)數(shù).【詳解】根據(jù)題意得,解得.故選D.【點睛】本題考查了函數(shù)自變量的取值范圍的確定和分式的意義.函數(shù)自變量的范圍一般從三個方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時,自變量可取全體實數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時,被開方數(shù)非負(fù)數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、,.【解析】試題分析:當(dāng)點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據(jù)有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當(dāng)點B的移動距離為時,D、B1兩點重合,根據(jù)對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當(dāng)四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當(dāng)點B的移動距離為時,四邊形ABC1D1為矩形;當(dāng)四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當(dāng)點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質(zhì).14、【解析】

要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質(zhì)15、3【解析】

用南部氣溫減北部的氣溫,根據(jù)“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當(dāng)天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.【點睛】本題考查了有理數(shù)的減法運算法則,減法運算法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).16、-1【解析】

利用反比例函數(shù)的性質(zhì),即可得到反比例函數(shù)圖象在第一、三象限,進(jìn)而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,

在每個象限內(nèi),y隨著x的增大而增大,

反比例函數(shù)圖象在第一、三象限,

,

的值可以取等,答案不唯一

故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.17、A【解析】試題分析:①當(dāng)點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數(shù),開口向上;②當(dāng)點P在AB上運動時,設(shè)P點坐標(biāo)為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當(dāng)點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數(shù)綜合題;2.動點問題的函數(shù)圖象.18、m>1【解析】試題分析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,求出直線y=-x+3+m與直線y=2x+4的交點,再由此點在第一象限可得出m的取值范圍.試題解析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,聯(lián)立兩直線解析式得:,解得:,即交點坐標(biāo)為(,),∵交點在第一象限,∴,解得:m>1.考點:一次函數(shù)圖象與幾何變換.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、,【解析】

先根據(jù)完全平方公式進(jìn)行約分化簡,再代入求值即可.【詳解】原式=-==,將a=+1代入得,原式===,故答案為.【點睛】本題主要考查了求代數(shù)式的值、分式的運算,解本題的要點在于正確化簡,從而得到答案.20、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達(dá)到172m1.【解析】

(1)假設(shè)能,設(shè)AB的長度為x米,則BC的長度為(31﹣1x)米,再根據(jù)矩形面積公式列方程求解即可得到答案.(1)假設(shè)能,設(shè)AB的長度為y米,則BC的長度為(36﹣1y)米,再根據(jù)矩形面積公式列方程,求得方程無解,即假設(shè)不成立.【詳解】(1)假設(shè)能,設(shè)AB的長度為x米,則BC的長度為(31﹣1x)米,根據(jù)題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設(shè)成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設(shè)能,設(shè)AB的長度為y米,則BC的長度為(36﹣1y)米,根據(jù)題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設(shè)不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達(dá)到172m1.21、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關(guān)鍵在于清楚角度的轉(zhuǎn)換方式和弦長的計算方法.22、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解析】

(1)∵點A的坐標(biāo)為(?2,1),∴2+1=4,點R(0,4),S(2,2),T(2,?2)中,0+4=4,2+2=4,2+2=5,∴點A的同族點的是R,S;故答案為R,S;②∵點B在x軸上,∴點B的縱坐標(biāo)為0,設(shè)B(x,0),則|x|=4,∴x=±4,∴B(?4,0)或(4,0);故答案為(?4,0)或(4,0);(2)①由題意,直線與x軸交于C(2,0),與y軸交于D(0,).點M在線段CD上,設(shè)其坐標(biāo)為(x,y),則有:,,且.點M到x軸的距離為,點M到y(tǒng)軸的距離為,則.∴點M的同族點N滿足橫縱坐標(biāo)的絕對值之和為2.即點N在右圖中所示的正方形CDEF上.∵點E的坐標(biāo)為(,0),點N在直線上,∴.②如圖,設(shè)P(m,0)為圓心,為半徑的圓與直線y=x?2相切,∴PC=2,∴OP=1,觀察圖形可知,當(dāng)m≥1時,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,再根據(jù)對稱性可知,m≤也滿足條件,∴滿足條件的m的范圍:m≤或m≥123、見解析【解析】

三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【詳解】作∠CDP=∠BCD,PD與AC的交點即P.【點睛】本題考查了三角形面積的靈活計算,還可以利用三角形的全等來進(jìn)行解題.24、(1).理由見解析;(2).【解析】

(1)根據(jù)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到,利用,得到,于是得到結(jié)論;

(2)連接PE,設(shè)DE=x,則EB=ED=x,CE=8-x,根據(jù)勾股定理即可得到結(jié)論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設(shè),由(1)得,,又,,∵,∴,∴,解得,即.【點睛】本題考查了線段垂直平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,正確的作出輔助線解題的關(guān)鍵.25、至少漲到每股6.1元時才能賣出.【解析】

根據(jù)關(guān)系式:總售價-兩次交易費≥總成本+1000列出不等式求解即可.【詳解】解:設(shè)漲到每股x元時賣出,根據(jù)題意得1000x-(5000+1000x)×0.5%≥5000+1000,解這個不等式得x≥,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論