版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)習(xí)目標(biāo)1.掌握平行線間的距離的概念及性質(zhì);2.運用平行四邊形的性質(zhì)計算和證明;(重點)3.能夠綜合運用平行四邊形的判定定理和性質(zhì).(難點)導(dǎo)入新課情境引入
在筆直的鐵軌上,夾在兩根鐵軌之間的平行枕木是否一樣長?你能說明理由嗎?與同伴交流.
如圖,在方格紙上畫兩條互相平行的直線,在其中一條直線上任取若干點,過這些點作另一條直線的垂線,用刻度尺度量出平行線之間的垂線段的長度.
經(jīng)過度量,我們發(fā)現(xiàn)這些垂線段的長度都相等(從圖中也可以看到這一點).平行線之間的距離一合作探究講授新課猜想:平行線間距離處處相等.如圖,直線a//b,A,B是直線a上任意兩點,AC⊥b,BD⊥b,垂足分別為C,D.求證:AC=BD.證明:∵AC⊥CD,BD⊥CD,理論證明abABCD∴∠1=∠2=90°.∴AC∥BD.∴AB∥CD,∴四邊形ACDB是平行四邊形.∴AC=BD.12
如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等(如圖:AC=BD),這個距離稱為平行線之間的距離.歸納總結(jié)(簡記為:兩條平行線間的距離處處相等).AB思考:兩條平行線之間的距離與點和點之間的距離、點到線之間的距離有何區(qū)別與聯(lián)系?abAB
點到直線的距離只有一條,即過直線外點作直線的垂線段的長度;而平行線的距離有無數(shù)條即一直線任一點都可以得到一條兩平行直線的距離.例1如圖,直線AE//BD,點C在BD上,若AE=5,BD=8,△ABD的面積為16,則△ACE的面積為
.ABCDE分析:根據(jù)平行線之間的距離處處相等.解析:設(shè)高為h,則S△ABD=·BD·h=16,h=4,所以S△ACE=·AE·h=×5×4=10.10典例精析思考:若垂線段改為夾在兩條線段間的平行線段呢?它們是否相等呢?
由“兩組對邊分別平行的四邊形是平行四邊形”易知其圍成的封閉圖形為平行四邊形,再由平行四邊形性質(zhì)易知夾在兩條平行線間的平行線段相等.例2已知,如圖,在平行四邊形ABCD中,BN=DM,BE=DF.求證:四邊形MENF是平行四邊形證明:在平行四邊形ABCD中,AD∥BC,∴∠MDF=∠NBE.∵DM=BN,DF=BE,∴△MDF≌△NBE(SAS).∴MF=NE,∠MFD=∠NEB.∴四邊形MENF是平行四邊形.∴∠MFE=∠NEF∴FM∥EN.ABCDEF證明:∵四邊形AEFD和EBCF都是平行四邊形,∴AD
EF,EF
BC.∴ADBC.∴四邊形ABCD是平行四邊形.//=//=//=問題
四邊形AEFD和EBCF都是平行四邊形,求證四邊形ABCD是平行四邊形.平行四邊形性質(zhì)與判定的綜合運用二提示:要由其中的一個或多個平行四邊形,得出四邊形中邊角的條件,判定其他四邊形也是平行四邊形例3.如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,E、F是對角線AC上的兩點,給出下列四個條件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四邊形DEBF是平行四邊形的有()A.0個B.1個C.2個D.3個B【解析】由平行四邊形的判定方法可知:若是四邊形的對角線互相平分,可證明這個四邊形是平行四邊形,②不能證明對角線互相平分,只有①③④可以,故選B.例4如圖,在ABCD中,AE⊥BD于E,CF⊥BD于F,連接AF,CE.求證:AF=CE.證明:∵四邊形ABCD是平行四邊形∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,∠ABE=∠CDF,
∠AEB=∠CFD,AB=CD,∴△ABE≌△CDF(AAS).∴AE=CF,∵AE∥CF,∴四邊形AECF是平行四邊形,∴AF=CE.1.(1)在□ABCD中,∠A=150°,AB=8cm,BC=10cm,則S□ABCD=
.提示:過點A作AE⊥BC于E,然后利用勾股定理求出AE的值.40cm2(2)若點P是□ABCD上AD上任意一點,那么△PBC的面積是
.20cm2提示:△PBC與□ABCD是同底等高.當(dāng)堂練習(xí)2.如圖,?ABCD中.EF∥GH∥BC,MN∥AB,則圖中平行四邊形的個數(shù)是()A.13B.14C.15D.18【解析】根據(jù)平行四邊形的定義:兩組對邊分別平行的四邊形是平行四邊形,如圖,則圖中的四邊形AEOM、AGPM、ABNM、EGPO、EBNO、GBNP、MOFD、MPHD、MNCD、OPHF、ONCF、PNCH、AEFD、AGHD、ABCD、EGHF、EBCF和GBCH都是平行四邊形,共18個.故選D.D3.在?ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個條件,這個條件不可以是()A.AF=CEB.AE=CFC.∠BAE=∠FCDD.∠BEA=∠FCEB4.如圖,?ABCD中,E,F(xiàn)分別為BC,AD邊上的點,要使四邊形BEDF為平行四邊形,需添加一個條件:
_________________________________.
【解析】∵四邊形EBFD要為平行四邊形.∴∠BAE=∠DCF,AB=CD在△AEB與△CFD中,AB=CD∠BAE=∠DCFAE=CF,∴△AEB≌△CFD(SAS),∴AE=FC∴DE=BF;AE=FC或∠ABE=∠CDF或BE=DF(答案不唯一)∴四邊形EBFD為平行四邊形.∴可添加的條件是AE=FC,同理還可添加∠ABE=∠CDF.故答案為:AE=FC或∠ABE=∠CDF或BE=DF(答案不唯一)5.如圖,在?ABCD中,E、F分別為邊AD、BC的中點,對角線AC分別交BE,DF于點G、H.求證:AG=CH.證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分別為AD、BC邊的中點,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四邊形BFDE是平行四邊形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥理學(xué)知識培訓(xùn)課件
- 論文寫作指南
- 2025年度餐飲加盟連鎖經(jīng)營合作協(xié)議書3篇
- 2025年度廣告?zhèn)髅讲鸹锖贤瑓f(xié)議4篇
- 專業(yè)藝術(shù)教師勞務(wù)合作合同(2024版)一
- 二零二四醫(yī)院護士勞動合同范本:護理危機管理與責(zé)任界定3篇
- 2025年茶山茶葉采摘與加工承包經(jīng)營合同4篇
- 2025年度快遞快遞業(yè)務(wù)市場營銷承包合同3篇
- 2025年度餐飲行業(yè)節(jié)能減排合作協(xié)議范本3篇
- 2025年度情侶忠誠保障不分手協(xié)議書電子版下載3篇
- 直播帶貨助農(nóng)現(xiàn)狀及發(fā)展對策研究-以抖音直播為例(開題)
- 腰椎間盤突出疑難病例討論
- 《光伏發(fā)電工程工程量清單計價規(guī)范》
- 2023-2024學(xué)年度人教版四年級語文上冊寒假作業(yè)
- (完整版)保證藥品信息來源合法、真實、安全的管理措施、情況說明及相關(guān)證明
- 營銷專員績效考核指標(biāo)
- 陜西麟游風(fēng)電吊裝方案專家論證版
- 供應(yīng)商審核培訓(xùn)教程
- 【盒馬鮮生生鮮類產(chǎn)品配送服務(wù)問題及優(yōu)化建議分析10000字(論文)】
- 肝硬化心衰患者的護理查房課件
- 2023年四川省樂山市中考數(shù)學(xué)試卷
評論
0/150
提交評論