版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
導(dǎo)入新課講授新課當堂練習課堂小結(jié)3.4實際問題與一元一次方程第三章一元一次方程第1課時產(chǎn)品配套問題和工程問題導(dǎo)入新課
前面我們學習了一元一次方程的解法,本節(jié)課,我們將討論一元一次方程的應(yīng)用.生活中,有很多需要進行配套的問題,如課桌和凳子、螺釘和螺母、電扇葉片和電機等,大家能體會到生活中配套問題的很多例子。情景引入產(chǎn)品配套問題一例1某車間有22名工人,每人每天可以生產(chǎn)1200個螺釘或2000個螺母.1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套,應(yīng)安排生產(chǎn)螺釘和螺母的工人各多少名?
如果設(shè)x名工人生產(chǎn)螺母,怎樣列方程?典例精析
解:設(shè)應(yīng)安排x名工人生產(chǎn)螺釘,(22-x)名工人生產(chǎn)螺母.依題意,得2000(22-x)=2×1200x.解方程,得x=10.
所以22-x=12.答:應(yīng)安排10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母.方法歸納生產(chǎn)調(diào)配問題通常從調(diào)配后各量之間的倍、分關(guān)系尋找相等關(guān)系,建立方程.解決配套問題的思路:1.利用配套問題中物品之間具有的數(shù)量關(guān)系作為列方程的依據(jù);2.利用配套問題中的套數(shù)不變作為列方程的依據(jù).如圖,足球是由32塊黑白相間的牛皮縫制而成的,黑皮可看作正五邊形,白皮可看作正六邊形,求白皮,黑皮各多少塊?變式訓(xùn)練分析:由圖可得,一塊白皮(六邊形)中,有三邊與黑皮(五邊形)相連,因此白皮邊數(shù)是黑皮邊數(shù)的2倍.數(shù)量邊數(shù)黑皮x5x白皮32-x6(32-x)等量關(guān)系:白皮邊數(shù)=黑皮邊數(shù)×2解:設(shè)足球上黑皮有x塊,則白皮為(32-x)塊,五邊形的邊數(shù)共有5x條,六邊形邊數(shù)有6(32-x)條.依題意,得2×5x=6(32-x),解得x=12,則32-x=20.答:白皮20塊,黑皮12塊.
一套儀器由一個A部件和三個B部件構(gòu)成.用1立方米鋼材可做40個A部件或240個B部件.現(xiàn)要用6立方米鋼材制作這種儀器,應(yīng)用多少鋼材做A部件,多少鋼材做B部件,才能恰好配成這種儀器?共配成多少套?
分析:由題意知B部件的數(shù)量是A部件數(shù)量的3倍,可根據(jù)這一等量關(guān)系式得到方程.做一做解:設(shè)應(yīng)用x立方米鋼材做A部件,則應(yīng)用(6-x)
立方米做B部件.根據(jù)題意,列方程:3×40x=(6-x)×240.解得x=4.則6-x=2.共配成儀器:4×40=160(套).答:應(yīng)用4立方米鋼材做A部件,2立方米鋼材做B部件,共配成儀器160套.如果把總工作量設(shè)為1,則人均效率(一個人1h完成的工作量)為,x人先做4h完成的工作量為,增加2人后再做8h完成的工作量為,
這兩個工作量之和等于.工程問題二例2
整理一批圖書,由一個人做要40h完成.現(xiàn)計劃由一部分人先做4h,然后增加2人與他們一起做8h,完成這項工作.假設(shè)這些人的工作效率相同,具體應(yīng)先安排多少人工作?分析:在工程問題中:工作量=人均效率×人數(shù)×時間;工作總量=各部分工作量之和.總工作量變式訓(xùn)練加工某種工件,甲單獨作要20天完成,乙只要10就能完成任務(wù),現(xiàn)在要求二人在12天內(nèi)完成任務(wù).問乙需工作幾天后甲再繼續(xù)加工才可正好按期完成任務(wù)?效率時間工作量甲乙x12-x解:設(shè)乙需工作x天后甲再繼續(xù)加工才可正好按期完成任務(wù),則甲做了(12-x)天.依題意,得解得x=8.答:乙需工作8天后甲再繼續(xù)加工才可正好按期完成任務(wù).想一想:若要求二人在8天內(nèi)完成任務(wù),乙先加工幾天后,甲加入合作加工,恰好能如期完成任務(wù)?效率時間工作量甲乙8x解:設(shè)甲加工x天,兩人如期完成任務(wù),則在甲加入之前,乙先工作了(8-x)天.依題意,得解得x=4,則8-x=4.答:乙需加工4天后,甲加入合作加工才可正好按期完成任務(wù).解決工程問題的基本思路:1.
三個基本量:工作量、工作效率、工作時間.它們之間的關(guān)系是:工作量=工作效率×工作時間.2.
相等關(guān)系:工作總量=各部分工作量之和.(1)按工作時間,工作總量=各時間段的工作量之和;
(2)按工作者,工作總量=各工作者的工作量之和.3.
通常在沒有具體數(shù)值的情況下,把工作總量看作1.要點歸納
一條地下管線由甲工程隊單獨鋪設(shè)需要12天,由乙工程隊單獨鋪設(shè)需要24天.如果由這兩個工程隊從兩端同時施工,要多少天可以鋪好這條管線?做一做分析:把工作量看作單位“1”,則甲的工作效率為,乙的工作效率為,根據(jù)工作效率×工作時間=工作量,列方程.
解方程,得x=8.答:要8天可以鋪好這條管線.解:設(shè)要x天可以鋪好這條管線,由題意得:當堂練習1.
某人一天能加工甲種零件50個或加工乙種零件20
個,1個甲種零件與2個乙種零件配成一套,30
天制作最多的成套產(chǎn)品,若設(shè)x天制作甲種零件,則可列方程為
.2×50x=20(30-x)2.
一項工作,甲獨做需18天,乙獨做需24天,如果兩人合做8天后,余下的工作再由甲獨做x天完成,那么所列方程為
.
3.
某家具廠生產(chǎn)一種方桌,1立方米的木材可做50個桌面或300條桌腿,現(xiàn)有10立方米的木材,怎樣分配生產(chǎn)桌面和桌腿使用的木材,才能使桌面、桌腿剛好配套,共可生產(chǎn)多少張方桌?(一張方桌有
1個桌面,4條桌腿)解:設(shè)用x立方米的木材做桌面,則用(10-x)立方米的木材做桌腿.根據(jù)題意,得4×50x=300(10-x),解得x=6,所以10-x=4,可做方桌為50×6=300(張).答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300張方桌.4.
一件工作,甲單獨做20小時完成,乙單獨做12小時完成,現(xiàn)在先由甲單獨做4小時,剩下的部分由甲、乙合做.剩下的部分需要幾小時完成?解:設(shè)剩下的部分需要x小時完成,根據(jù)題意得:解得x=6.答:剩下的部分需要6小時完成.5.
一個道路工程,甲隊單獨施工9天完成,乙隊單獨做24天完成.現(xiàn)在甲乙兩隊共同施工3天,因甲另有任
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手車買賣協(xié)議:2024年標準版版B版
- 二零二五年度高科技企業(yè)干股合資合同范本3篇
- 2025年度貨車交通事故責任分配合同3篇
- 二零二五年度空壓機租賃及空場地使用權(quán)共享服務(wù)協(xié)議3篇
- 張家口2024年河北張家口赤城縣事業(yè)單位招聘10人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024版全新法律事務(wù)委托合同下載
- 2024版常年稅務(wù)顧問合同:專業(yè)提供稅務(wù)咨詢與籌劃助力企業(yè)發(fā)展
- 2024版安置住房買賣正式協(xié)議版B版
- 二零二五版城市更新改造項目靜壓樁施工協(xié)議2篇
- 個人住房購買資金借貸協(xié)議版B版
- 醫(yī)療廢物轉(zhuǎn)運工作制度
- 新編建筑施工扣件式鋼管腳手架安全技術(shù)規(guī)范
- 三年級下冊小猿口算題1000道
- 決策的藝術(shù)課件
- 了不起的狐貍爸爸-全文打印
- 國際經(jīng)濟學國際貿(mào)易的標準理論
- 8D報告培訓(xùn)教材(PPT 47頁)
- -居民死亡醫(yī)學證明(推斷)書
- 糖尿病酮癥酸中毒病例討論-文檔資料
- 液相色譜質(zhì)譜質(zhì)譜儀LCMSMSSYSTEM
- 民辦非企業(yè)單位章程核準表-空白表格
評論
0/150
提交評論