基于遺傳算法的TSP路徑規(guī)劃算法設計_第1頁
基于遺傳算法的TSP路徑規(guī)劃算法設計_第2頁
基于遺傳算法的TSP路徑規(guī)劃算法設計_第3頁
基于遺傳算法的TSP路徑規(guī)劃算法設計_第4頁
基于遺傳算法的TSP路徑規(guī)劃算法設計_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

------------------------------------------------------------------------基于遺傳算法的TSP路徑規(guī)劃算法設計基于遺傳算法的TSP路徑規(guī)劃算法設計摘要TSP問題是一個經(jīng)典的NP難度的組合優(yōu)化問題,遺傳算法是求解TSP問題的有效方法之一。針對這一問題,首先給出了基于遺傳算法求解TSP問題的一般性流程,設計了基于遺傳算法的求解算法,包括編碼設計、適應度函數(shù)選擇、終止條件設定、選擇算子設定、交叉算子設定以及變異算子設定等,然后設計并實現(xiàn)了基于遺傳算法的TSP問題求解系統(tǒng),并編制了完整的Matlab程序予以仿真實現(xiàn)。引言旅行商問題(TravelingSalemanProblem,TSP),又叫貨郎擔問題,是最基本的路線問題,該問題是在尋求單一旅行者由起點出發(fā),通過所有給定的城市之后,最后再回到原點的最小路徑成本。該問題具有廣泛的應用性,如物流中的配送車輛調度問題就可看成一個約束性多路旅行商問題.因此,對TSP問題求解具有一定的現(xiàn)實意義。TSP問題屬于組合優(yōu)化問題,隨著問題規(guī)模增大,其可行解空間也急劇擴大,有時在當前的計算機上用枚舉法很難甚至不能求出最優(yōu)解,而用啟發(fā)式算法求解這類問題的滿意解是一個很好的方式,遺傳算法就是尋求這種滿意解的最佳工具之一。遺傳算法模擬自然進化過程來搜索最優(yōu)解[1],其本質是一種高效、并行、全局搜索的方法。本文采用遺傳算法求解TSP問題并編制Matlab程序進行仿真試驗。TSP問題的數(shù)學模型TSP問題即尋找一條最短的遍歷n個城市的最短路徑,使得:取最小值,di,i+1表示兩城市i和i+1之間的距離。遺傳算法的運行過程遺傳算法是一種"生成+檢測"的迭代搜索算法。其運算流程可用圖1來表示。圖1遺傳算法的程序TSP問題的遺傳算法實現(xiàn)4.1編碼并生成初始種群編碼是應用遺傳算法時要解決的首要問題,也是設計遺傳算法時的一個關鍵環(huán)節(jié)。求解TSP問題時,采用所遍歷城市的順序排列來表示各個個體的編碼是最自然的編碼方法[2],而且這種表示方法無需解碼過程,占用的內存空間較小。4.2適應度評估適應度用來度量群體中各個體在優(yōu)化過程中達到或接近于或有助于找到最優(yōu)解的優(yōu)良程度。適應度較高的個體被選中遺傳到下一代的概率較大;而適應度較低的個體被選中遺傳到下一代的概率相對較小一些。本文用個體所表示的循環(huán)路線的倒數(shù)來作為適應度評估值,路線越短,個體適應度值越大。4.3選擇、交叉、變異選擇操作。是從群體中選擇生命力強的個體產(chǎn)生新種群的過程.選擇操作以個體的適應度評估為基礎。其主要目的是避免有用遺傳信息的丟失。從而提高算法的全局收斂性和計算效率。常用的選擇算子有賭輪選擇、聯(lián)賽選擇、最佳保留等。其中,最佳個體保存策略可保證迄今為止所得到的最優(yōu)個體不會被交叉、變異等遺傳操作所破壞。它是遺傳算法收斂性的一個重要保證條件。但它也容易使得某個局部最優(yōu)個體不易被淘汰反而快速擴散。從而使得算法的全局搜索能力不強。因此,最佳個體保存一般要與其他選擇方法配合使用方可取得良好的效果[3]。交叉運算產(chǎn)生子代,子代繼承父代的基本特征。交叉算子一般包括兩個內容:一是對種群中的個體隨機配對并按預先設定的交叉概率來確定需要進行交叉操作的個體對;二是設定個體的交叉點,并對的部分結構進行相互交換。交叉算子的設計與編碼方式有關。在TSP問題中幾種有代表性的交叉算子如順序交叉、類OX交叉等,這些交叉算子在產(chǎn)生新個體的過程中沒有目的性,對于自然數(shù)編碼的TSP問題,這些交叉可能破壞親代的較優(yōu)基因,從而使交叉算子的搜索能力大大降低。變異操作是對個體的某些基因值做變動。變異操作的目的有兩個,一是使遺傳算法具有局部的隨機搜索能力,當經(jīng)過交叉操作群體已接近最優(yōu)解領域時,利用變異算子可以加速向最優(yōu)解收斂;二是使遺傳算法可維持群體的多樣性,以防止早熟現(xiàn)象。變異算子的設計也與編碼方法有關,對于自然數(shù)編碼的TSP問題,可采用逆轉變異、對換變異和插入變異等。逆轉變異,也稱倒位變異,是指在個體編碼中,隨機選擇兩點(兩點間稱為逆轉區(qū)域),再將這兩點內的字串按反序插入到原位置中.倒位變異考慮了原有邊的鄰接關系,能將巡回路線上的優(yōu)良基因性能較好地遺傳到下一代,提高尋優(yōu)速度。仿真結果ans=1.0e+003*Columns1through1002.53892.87382.57532.31812.15872.21663.17403.37113.54022.538901.07350.11130.26680.39500.41010.63790.85361.05502.87381.073500.96450.98861.09431.38271.24011.46031.68702.57530.11130.964500.26210.41670.50360.62470.85491.06842.31810.26680.98860.262100.16340.39510.88501.11091.31822.15870.39501.09430.41670.163400.33861.03031.24861.44772.21660.41011.38270.50360.39510.338600.98411.16031.32373.17400.63791.24010.62470.88501.03030.984100.24340.47383.37110.85361.46030.85491.11091.24861.16030.243400.23213.54021.05501.68701.06841.31821.44771.32370.47380.232101.73700.91021.20170.90720.64850.52260.77621.53201.75941.96511.37541.16381.68711.20410.95200.78970.85711.79871.99892.17571.69600.86901.58000.92860.70140.54190.52071.48981.67751.84441.25081.30881.88371.35951.11590.95260.96661.93542.12462.28981.61722.38893.23942.48192.31392.17191.97942.88062.98153.05662.49300.37090.73060.27900.26830.40770.65510.82801.07001.29532.61740.90790.26700.80670.77440.85941.16831.20741.44381.67572.75761.13630.17131.03181.01271.09671.40681.37271.59981.82912.47800.90800.39830.81580.73730.79781.12251.27761.51831.75032.38691.26350.60211.17951.05981.08031.41831.65771.89772.12982.77531.57210.61221.47351.41081.46211.79291.84162.06752.29593.02311.73230.69241.62811.59671.66391.98681.92822.14162.36422.16310.62910.82000.58240.37760.36680.70541.18551.42461.64502.20371.06020.68120.98950.83220.83101.16941.52721.77062.00052.11601.35040.87881.28401.11201.08911.42261.82472.06792.29812.31271.89661.20851.82261.66671.64891.98222.32382.56422.79621.87652.04971.59201.99831.79241.72882.03372.56712.81043.03882.21442.29001.66762.22582.04482.00272.32312.75632.99853.23001.24181.51081.63591.50991.25101.11871.32392.13462.36172.56571.56101.73911.51521.70551.47341.38321.66192.30882.54922.77041.25542.08951.94932.07001.82311.71101.94992.68682.92333.1382Columns11through201.73701.37541.69601.25081.61722.49302.61742.75762.47802.38690.91021.16380.86901.30882.38890.37090.90791.13630.90801.26351.20171.68711.58001.88373.23940.73060.26700.17130.39830.60210.90721.20410.92861.35952.48190.27900.80671.03180.81581.17950.64850.95200.70141.11592.31390.26830.77441.01270.73731.05980.52260.78970.54190.95262.17190.40770.85941.09670.79781.08030.77620.85710.52070.96661.97940.65511.16831.40681.12251.41831.53201.79871.48981.93542.88060.82801.20741.37271.27761.65771.75941.99891.67752.12462.98151.07001.44381.59981.51831.89771.96512.17571.84442.28983.05661.29531.67571.82911.75032.129800.49380.52670.69162.10510.76590.93471.12730.81000.90400.493800.34830.19791.62441.15561.42041.61991.30061.38440.52670.348300.44711.65940.94571.32301.54701.22631.40360.69160.19790.447101.43621.33401.61721.81771.49821.57822.10511.62441.65941.436202.57782.98163.20202.87993.00670.76591.15560.94571.33402.577800.54060.77370.53790.90080.93471.42041.32301.61722.98160.540600.23860.14190.46671.12731.61991.54701.81773.20200.77370.238600.32240.43760.81001.30061.22631.49822.87990.53790.14190.322400.38050.90401.38441.40361.57823.00670.90080.46670.43760.380501.34091.82291.83152.01653.44471.20170.66830.46910.67370.43841.58152.06742.06142.26213.68651.36760.82740.59630.86620.68500.42650.88020.76471.07342.42260.36700.55910.78290.46430.71410.63841.12531.13331.32112.74340.71970.45200.55400.31390.27030.77631.21611.30171.40042.83661.01700.69990.72070.57860.28941.30461.69031.82971.85613.27411.54781.12871.03801.04610.66661.27201.53021.75521.65923.00781.74591.44641.42291.33070.99361.58561.88482.08892.02193.37931.95831.57641.49691.48321.11000.60270.60120.89940.70052.05761.35281.38451.51611.24351.15240.88611.09161.33501.21662.57531.48181.31081.36161.17520.93161.18991.23401.54171.29902.50521.86851.74071.79601.60321.3650Columns21through302.77533.02312.16312.20372.11602.31271.87652.21441.24181.56101.57211.73230.62911.06021.35041.89662.04972.29001.51081.73910.61220.69240.82000.68120.87881.20851.59201.66761.63591.51521.47351.62810.58240.98951.28401.82261.99832.22581.50991.70551.41081.59670.37760.83221.11201.66671.79242.04481.25101.47341.46211.66390.36680.83101.08911.64891.72882.00271.11871.38321.79291.98680.70541.16941.42261.98222.03372.32311.32391.66191.84161.92821.18551.52721.82472.32382.56712.75632.13462.30882.06752.14161.42461.77062.06792.56422.81042.99852.36172.54922.29592.36421.64502.00052.29812.79623.03883.23002.56572.77041.34091.58150.42650.63840.77631.30461.27201.58560.60270.88611.82292.06740.88021.12531.21611.69031.53021.88480.60121.09161.83152.06140.76471.13331.30171.82971.75522.08890.89941.33502.01652.26211.07341.32111.40041.85611.65922.02190.70051.21663.44473.68652.42262.74342.83663.27413.00783.37932.05762.57531.20171.36760.36700.71971.01701.54781.74591.95831.35281.48180.66830.82740.55910.45200.69991.12871.44641.57641.38451.31080.46910.59630.78290.55400.72071.03801.42291.49691.51611.36160.67370.86620.46430.31390.57861.04611.33071.48321.24351.17520.43840.68500.71410.27030.28940.66660.99361.11001.15240.931600.25181.10680.70310.66430.69271.16551.13901.56001.25110.251801.31990.94320.91550.86711.36351.28231.81141.48871.10681.319900.46560.73581.29301.42071.66720.99151.12540.70310.94320.465600.29820.83681.04371.23860.96210.86150.66430.91550.73580.298200.55980.75310.94190.89590.64260.69270.86711.29300.83680.559800.50550.45961.22950.76001.16551.36351.42071.04370.75310.505500.37170.96530.44281.13901.28231.66721.23860.94190.45960.371701.33310.80951.56001.81140.99150.96210.89591.22950.96531.333100.52371.25111.48871.12540.86150.64260.76000.44280.80950.523701.66461.89351.50331.28941.07651.09260.62410.96100.64230.4344Column311.25542.08951.94932.07001.82311.71101.94992.68682.92333.13821.18991.23401.54171.29902.50521.86851.74071.79601.60321.36501.66461.89351.50331.28941.07651.09260.62410.96100.64230.43440BestShortcut=Columns1through1729313027282625202122183171924168Columns18through31910245762311131214151theMinDistance=1.5727e+004圖231城市搜索圖圖3搜索過程總結本文針對TSP問題,首先給出了基于遺傳算法求解TSP問題的一般性流程,設計了基于遺傳算法的求解算法,包括編碼設計、適應度函數(shù)選擇、終止條件設定、選擇算子設定、交叉算子設定以及變異算子設定等,然后設計并實現(xiàn)了基于遺傳算法的TSP問題求解系統(tǒng),并編制了完整的Matlab程序予以仿真實現(xiàn)。根據(jù)仿真結果可知,遺傳算法是尋求這種滿意解的最佳工具之一,是一種高效、并行、全局搜索的方法。參考文獻[1]雷英杰,等.2009MATLAB遺傳算法工具箱及應用[M].西安:西安電子科技大學出版社,8-9.[2]儲理才.2001基于MATLAB的遺傳算法程序設計及TSP問題求解[J].集美大學學報(自然科學版),6(1):14-19.[3]郎茂祥.2009配送車輛優(yōu)化調度模型與算法[M].北京:電子工業(yè)出版社,75.程序清單:31城市坐標圖(x)程序:load('x.txt','-ascii');load('y.txt','-ascii');plot(x,y,'x')xlabel('X坐標'),ylabel('Y坐標');gridonCalDist程序:functionF=CalDist(dislist,s)DistanV=0;n=size(s,2);fori=1:(n-1)DistanV=DistanV+dislist(s(i),s(i+1));endDistanV=DistanV+dislist(s(n),s(1));F=DistanV;drawTSP程序:functionm=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);fori=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(BSF(i+1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');holdon;endplot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNum),2),Clist(BSF(1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');title([num2str(CityNum),'城市TSP']);iff==0text(500,230,['第',int2str(p),'步','最短距離為',num2str(bsf)]);elsetext(500,230,['最終搜索結果:最短距離',num2str(bsf)]);endholdoff;pause(0.05);genetic_algorithm程序:functiongaTSPCityNum=31;[dislist,Clist]=tsp(CityNum);inn=100;%初始種群大小gnmax=200;%最大代數(shù)pc=0.8;%交叉概率pm=0.8;%變異概率%產(chǎn)生初始種群fori=1:inns(i,:)=randperm(CityNum);end[f,p]=objf(s,dislist);gn=1;whilegn<gnmax+1forj=1:2:innseln=sel(s,p);%選擇操作scro=cro(s,seln,pc);%交叉操作scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);smnew(j,:)=mut(scnew(j,:),pm);%變異操作smnew(j+1,:)=mut(scnew(j+1,:),pm);ends=smnew;%產(chǎn)生了新的種群[f,p]=objf(s,dislist);%計算新種群的適應度%記錄當前代最好和平均的適應度[fmax,nmax]=max(f);ymean(gn)=1000/mean(f);ymax(gn)=1000/fmax;%記錄當前代的最佳個體x=s(nmax,:);drawTSP(Clist,x,ymax(gn),gn,0);gn=gn+1;pause;endgn=gn-1;figure(2);plot(ymax,'r');holdon;plot(ymean,'b');grid;title('搜索過程');legend('最優(yōu)解','平均解');end%------------------------------------------------%計算適應度函數(shù)function[f,p]=objf(s,dislist);inn=size(s,1);%讀取種群大小fori=1:innf(i)=CalDist(dislist,s(i,:));%計算函數(shù)值,即適應度endf=1000./f';%計算選擇概率fsum=0;fori=1:innfsum=fsum+f(i)^15;endfori=1:innps(i)=f(i)^15/fsum;end%計算累積概率p(1)=ps(1);fori=2:innp(i)=p(i-1)+ps(i);endp=p';end%--------------------------------------------------functionpcc=pro(pc);test(1:100)=0;l=round(100*pc);test(1:l)=1;n=round(rand*99)+1;pcc=test(n);end%--------------------------------------------------%“選擇”操作functionseln=sel(s,p);inn=size(p,1);%從種群中選擇兩個個體fori=1:2r=rand;%產(chǎn)生一個隨機數(shù)prand=p-r;j=1;whileprand(j)<0j=j+1;endseln(i)=j;%選中個體的序號endend%------------------------------------------------%“交叉”操作functionscro=cro(s,seln,pc);bn=size(s,2);pcc=pro(pc);%根據(jù)交叉概率決定是否進行交叉操作,1則是,0則否scro(1,:)=s(seln(1),:);scro(2,:)=s(seln(2),:);ifpcc==1c1=round(rand*(bn-2))+1;%在[1,bn-1]范圍內隨機產(chǎn)生一個交叉位c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);middle=scro(1,chb1+1:chb2);scro(1,chb1+1:chb2)=scro(2,chb1+1:chb2);scro(2,chb1+1:chb2)=middle;fori=1:chb1whilefind(scro(1,chb1+1:chb2)==scro(1,i))zhi=find(scro(1,chb1+1:chb2)==scro(1,i));y=scro(2,chb1+zhi);scro(1,i)=y;endwhilefind(scro(2,chb1+1:chb2)==scro(2,i))zhi=find(scro(2,chb1+1:chb2)==scro(2,i));y=scro(1,chb1+zhi);scro(2,i)=y;endendfori=chb2+1:bnwhilefind(scro(1,1:chb2)==scro(1,i))zhi=find(scro(1,1:chb2)==scro(1,i));y=scro(2,zhi);scro(1,i)=y;endwhilefind(scro(2,1:chb2)==scro(2,i))zhi=find(scro(2,1:chb2)==scro(2,i));y=scro(1,zhi);scro(2,i)=y;endendendend%--------------------------------------------------%“變異”操作functionsnnew=mut(snew,pm);bn=size(snew,2);snnew=snew;pmm=pro(pm);%根據(jù)變異概率決定是否進行變異操作,1則是,0則否ifpmm==1c1=round(rand*(bn-2))+1;%在[1,bn-1]范圍內隨機產(chǎn)生一個變異位c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);x=snew(chb1+1:chb2);snnew(chb1+1:chb2)=fliplr(x);endendtabu_search程序:clear;CityNum=31;[dislist,Clist]=tsp(CityNum);Tlist=zeros(CityNum);%禁忌表(tabulist)cl=100;%保留前cl個最好候選解bsf=Inf;tl=50;%禁忌長度(tabulength)l1=200;%候選解(candidate),不大于n*(n-1)/2(全部領域解個數(shù))S0=randperm(CityNum);S=S0;BSF=S0;Si=zeros(l1,CityNum);StopL=200;%終止步數(shù)p=1;clf;figure(1);while(p<StopL+1)ifl1>CityNum*(CityNum)/2disp('候選解個數(shù),不大于n*(n-1)/2(全部領域解個數(shù))!系統(tǒng)自動退出!');l1=(CityNum*(CityNum)/2)^.5;break;endArrS(p)=CalDist(dislist,S);i=1;A=zeros(l1,2);whilei<=l1M=CityNum*rand(1,2);M=ceil(M);ifM(1)~=M(2)m1=max(M(1),M(2));m2=min(M(1),M(2));A(i,1)=m1;A(i,2)=m2;ifi==1isdel=0;elseforj=1:i-1ifA(i,1)==A(j,1)&&A(i,2)==A(j,2)isdel=1;break;elseisdel=0;endendend

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論