版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022屆江蘇省射陽實驗初中達標名校中考數(shù)學(xué)五模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某校在國學(xué)文化進校園活動中,隨機統(tǒng)計50名學(xué)生一周的課外閱讀時間如表所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()學(xué)生數(shù)(人)5814194時間(小時)678910A.14,9 B.9,9 C.9,8 D.8,92.有一個數(shù)用科學(xué)記數(shù)法表示為5.2×105,則這個數(shù)是()A.520000 B. C.52000 D.52000003.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.菱形 C.平行四邊形 D.正五邊形4.下列運算正確的是()A.a(chǎn)2+a3=a5 B.(a3)2÷a6=1 C.a(chǎn)2?a3=a6 D.(2+3)2=55.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定6.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x67.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是A. B. C. D.8.為了盡早適應(yīng)中考體育項目,小麗同學(xué)加強跳繩訓(xùn)練,并把某周的練習(xí)情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個9.下列幾何體中,主視圖和俯視圖都為矩形的是(
)A. B. C. D.10.如圖,已知△ADE是△ABC繞點A逆時針旋轉(zhuǎn)所得,其中點D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.12.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應(yīng)點為P,則線段AP的長為______.13.如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,接著關(guān)閉進水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的部分關(guān)系.那么,從關(guān)閉進水管起分鐘該容器內(nèi)的水恰好放完.14.如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點A的對應(yīng)點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____.15.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.16.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.三、解答題(共8題,共72分)17.(8分)如圖,在?ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.18.(8分)為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.(1)求購進A、B兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?19.(8分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.20.(8分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.21.(8分)某中學(xué)為了了解在校學(xué)生對校本課程的喜愛情況,隨機調(diào)查了部分學(xué)生對五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個不完整統(tǒng)計圖.請根據(jù)圖中所提供的信息,完成下列問題:(1)本次被調(diào)查的學(xué)生的人數(shù)為;(2)補全條形統(tǒng)計圖(3)扇形統(tǒng)計圖中,類所在扇形的圓心角的度數(shù)為;(4)若該中學(xué)有2000名學(xué)生,請估計該校最喜愛兩類校本課程的學(xué)生約共有多少名.22.(10分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標;(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標.23.(12分)如圖,已知⊙O經(jīng)過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.24.如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC、AB于點E、F.(1)若∠B=30°,求證:以A、O、D、E為頂點的四邊形是菱形.(2)若AC=6,AB=10,連結(jié)AD,求⊙O的半徑和AD的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
解:觀察、分析表格中的數(shù)據(jù)可得:∵課外閱讀時間為1小時的人數(shù)最多為11人,∴眾數(shù)為1.∵將這組數(shù)據(jù)按照從小到大的順序排列,第25個和第26個數(shù)據(jù)的均為2,∴中位數(shù)為2.故選C.【點睛】本題考查(1)眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);(2)中位數(shù)的確定要分兩種情況:①當(dāng)數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為奇數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的那個數(shù)就是中位數(shù);②當(dāng)數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為偶數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).2、A【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】5.2×105=520000,故選A.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、B【解析】
在平面內(nèi),如果一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi)一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形能互相重合,那么這個圖形叫做中心對稱圖形,分別判斷各選項即可解答.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、菱形是軸對稱圖形,也是中心對稱圖形,故此選項正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握是解題的關(guān)鍵.4、B【解析】
利用合并同類項對A進行判斷;根據(jù)冪的乘方和同底數(shù)冪的除法對B進行判斷;根據(jù)同底數(shù)冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【點睛】本題考查同底數(shù)冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關(guān)鍵是在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.5、C【解析】
首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,
∴點O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關(guān)系.解題關(guān)鍵點:理解直線與圓的位置關(guān)系的判定方法.6、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.7、A【解析】
根據(jù)一元二次方程的根的判別式,建立關(guān)于m的不等式,求出m的取值范圍即可.【詳解】∵關(guān)于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點睛】本題考查了根的判別式,解題的關(guān)鍵在于熟練掌握一元二次方程根的情況與判別式△的關(guān)系,即:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.8、B【解析】
根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關(guān)鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).9、B【解析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.10、D【解析】
利用旋轉(zhuǎn)不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考??碱}型.二、填空題(本大題共6個小題,每小題3分,共18分)11、42【解析】
延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設(shè)BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.【詳解】延長AB交DC于H,作EG⊥AB于G,如圖所示:
則GH=DE=15米,EG=DH,
∵梯坎坡度i=1:2.4,
∴BH:CH=1:2.4,
設(shè)BH=x米,則CH=2.4x米,
在Rt△BCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴BH=5米,CH=12米,
∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=32(米),
∴AB=AG+BG=32+10=42(米);
故答案為42【點睛】本題考查了解直角三角形的應(yīng)用-坡度、俯角問題;通過作輔助線運用勾股定理求出BH,得出EG是解決問題的關(guān)鍵.12、1或1﹣2【解析】
當(dāng)點P在AF上時,由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當(dāng)點P在BE上時,由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.13、8?!窘馕觥扛鶕?jù)函數(shù)圖象求出進水管的進水量和出水管的出水量,由工程問題的數(shù)量關(guān)系就可以求出結(jié)論:由函數(shù)圖象得:進水管每分鐘的進水量為:20÷4=5升。設(shè)出水管每分鐘的出水量為a升,由函數(shù)圖象,得,解得:?!嚓P(guān)閉進水管后出水管放完水的時間為:(分鐘)。14、4或4.【解析】
①當(dāng)AF<AD時,由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質(zhì)得到MH=AE=2,根據(jù)勾股定理得到A′H=,根據(jù)勾股定理列方程即可得到結(jié)論;②當(dāng)AF>AD時,由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據(jù)矩形的性質(zhì)得到DH=AG,HG=AD=6,根據(jù)勾股定理即可得到結(jié)論.【詳解】①當(dāng)AF<AD時,如圖1,將△AEF沿EF折疊,當(dāng)折疊后點A的對應(yīng)點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設(shè)MN是BC的垂直平分線,則AM=AD=3,過E作EH⊥MN于H,則四邊形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②當(dāng)AF>AD時,如圖2,將△AEF沿EF折疊,當(dāng)折疊后點A的對應(yīng)點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設(shè)MN是BC的垂直平分線,過A′作HG∥BC交AB于G,交CD于H,則四邊形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,綜上所述,折痕EF的長為4或4,故答案為:4或4.【點睛】本題考查了翻折變換-折疊問題,矩形的性質(zhì)和判定,勾股定理,正確的作出輔助線是解題的關(guān)鍵.15、48°【解析】
連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關(guān)計算,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.16、110°.【解析】
解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.三、解答題(共8題,共72分)17、(1)見解析;(2)2【解析】
(1)方法一:連接AC,利用角平分線判定定理,證明DA=DC即可;方法二:只要證明△AEB≌△AFD.可得AB=AD即可解決問題;(2)在Rt△ACF,根據(jù)AF=CF·tan∠ACF計算即可.【詳解】(1)證法一:連接AC,如圖.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四邊形ABCD是菱形.證法二:如圖,∵四邊形ABCD是平行四邊形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四邊形ABCD是菱形.(2)連接AC,如圖.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四邊形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF?tan∠ACF=2.【點睛】本題主要考查三角形的性質(zhì)及三角函數(shù)的相關(guān)知識,充分利用已知條件靈活運用各種方法求解可得到答案。18、(1)A種紀念品需要100元,購進一件B種紀念品需要50元(2)共有4種進貨方案(3)當(dāng)購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元【解析】解:(1)設(shè)該商店購進一件A種紀念品需要a元,購進一件B種紀念品需要b元,根據(jù)題意得方程組得:,…2分解方程組得:,∴購進一件A種紀念品需要100元,購進一件B種紀念品需要50元…4分;(2)設(shè)該商店購進A種紀念品x個,則購進B種紀念品有(100﹣x)個,∴,…6分解得:50≤x≤53,…7分∵x為正整數(shù),∴共有4種進貨方案…8分;(3)因為B種紀念品利潤較高,故B種數(shù)量越多總利潤越高,因此選擇購A種50件,B種50件.…10分總利潤=50×20+50×30=2500(元)∴當(dāng)購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元.…12分19、1【解析】
通過已知等式化簡得到未知量的關(guān)系,代入目標式子求值.【詳解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均為實數(shù),∴x=y=z.∴20、解:(1)圖見解析;(2)證明見解析.【解析】
(1)根據(jù)角平分線的作法作出∠ABC的平分線即可.(2)首先根據(jù)角平分線的性質(zhì)以及平行線的性質(zhì)得出∠ABE=∠AEB,進而得出△ABO≌△FBO,進而利用AF⊥BE,BO=EO,AO=FO,得出即可.【詳解】解:(1)如圖所示:(2)證明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四邊形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四邊形ABFE為菱形.21、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據(jù)A種類人數(shù)及其占總?cè)藬?shù)百分比可得答案;
(2)用總?cè)藬?shù)乘以B的百分比得出其人數(shù),即可補全條形圖;
(3)用360°乘以C類人數(shù)占總?cè)藬?shù)的比例可得;
(4)總?cè)藬?shù)乘以C、D兩類人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調(diào)查的學(xué)生的人數(shù)為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數(shù)為300×20%=60(人),
補全條形圖如下:
(3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計該校喜愛C,D兩類校本課程的學(xué)生共有840名.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解題關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).22、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標代入解析式,解方程組即可得到結(jié)論;②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進而得到.設(shè)EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設(shè)DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標,進而求出CE的直線解析式,聯(lián)立解方程組即可得到結(jié)論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應(yīng)邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結(jié)論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設(shè)EN=3x,則CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E(,0).CE的直線解析式為:,,解得:.點P的橫坐標.(2)作DI⊥x軸,垂足為I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)老院護理服務(wù)與設(shè)施租賃合同3篇
- 2025年度土地流轉(zhuǎn)與農(nóng)業(yè)廢棄物綜合利用合同3篇
- 2025年度綠色能源補貼合同范本2篇
- 2025年度汽車4S店店面租賃及品牌運營合同3篇
- 二零二四醫(yī)院護士勞動合同樣本:醫(yī)院護理團隊人員勞動合同3篇
- 2025年度債務(wù)重組與財產(chǎn)分配稅務(wù)籌劃合同3篇
- 二零二五版高端別墅租賃管理服務(wù)合同2篇
- 2024知名品牌授權(quán)使用及銷售代理合同
- 2024食堂人員安全生產(chǎn)責(zé)任與聘用合同3篇
- 2024貼磚勞務(wù)分包合同施工質(zhì)量監(jiān)督協(xié)議3篇
- 2025年湖北武漢工程大學(xué)招聘6人歷年高頻重點提升(共500題)附帶答案詳解
- 【數(shù) 學(xué)】2024-2025學(xué)年北師大版數(shù)學(xué)七年級上冊期末能力提升卷
- GB/T 26846-2024電動自行車用電動機和控制器的引出線及接插件
- 遼寧省沈陽市皇姑區(qū)2024-2025學(xué)年九年級上學(xué)期期末考試語文試題(含答案)
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 妊娠咳嗽的臨床特征
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2024年金融理財-擔(dān)保公司考試近5年真題附答案
- 泰山產(chǎn)業(yè)領(lǐng)軍人才申報書
- 高中語文古代文學(xué)課件:先秦文學(xué)
評論
0/150
提交評論