山西省運(yùn)城市臨晉中學(xué)2023年數(shù)學(xué)高二第二學(xué)期期末檢測模擬試題含解析_第1頁
山西省運(yùn)城市臨晉中學(xué)2023年數(shù)學(xué)高二第二學(xué)期期末檢測模擬試題含解析_第2頁
山西省運(yùn)城市臨晉中學(xué)2023年數(shù)學(xué)高二第二學(xué)期期末檢測模擬試題含解析_第3頁
山西省運(yùn)城市臨晉中學(xué)2023年數(shù)學(xué)高二第二學(xué)期期末檢測模擬試題含解析_第4頁
山西省運(yùn)城市臨晉中學(xué)2023年數(shù)學(xué)高二第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則,.設(shè)一批白熾燈的壽命(單位:小時)服從均值為1000,方差為400的正態(tài)分布,隨機(jī)從這批白熾燈中選取一只,則()A.這只白熾燈的壽命在980小時到1040小時之間的概率為0.8186B.這只白熾燈的壽命在600小時到1800小時之間的概率為0.8186C.這只白熾燈的壽命在980小時到1040小時之間的概率為0.9545D.這只白熾燈的壽命在600小時到1800小時之間的概率為0.95452.2019年,河北等8省公布了高考改革綜合方案將采取“3+1+2”模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門.一名同學(xué)隨機(jī)選擇3門功課,則該同學(xué)選到物理、地理兩門功課的概率為()A. B. C. D.3.已知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,則公差d等于()A.1 B. C.2 D.34.已知集合,,則等于()A. B. C. D.5.已知某同學(xué)在高二期末考試中,A和B兩道選擇題同時答對的概率為,在A題答對的情況下,B題也答對的概率為,則A題答對的概率為()A. B. C. D.6.若滿足約束條件,則的最大值為()A.9 B.5 C.11 D.37.中,若,則該三角形一定是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形8.函數(shù)的圖象是()A. B.C. D.9.復(fù)數(shù)()A. B. C.0 D.210.某車間加工零件的數(shù)量x與加工時間y的統(tǒng)計數(shù)據(jù)如圖:現(xiàn)已求得上表數(shù)據(jù)的回歸方程中的值為0.9,則據(jù)此回歸模型可以預(yù)測,加工100個零件所需要的加工時間約為()零件個數(shù)x(個)102030加工時間y(分鐘)213039A.112分鐘 B.102分鐘 C.94分鐘 D.84分鐘11.甲罐中有個紅球,個白球和個黑球,乙罐中有個紅球,個白球和個黑球,先從甲罐中隨機(jī)取出一個球放入乙罐,分別以,,表示由甲罐取出的球是紅球、白球和黑球的事件,再從乙罐中隨機(jī)取出一個球,以表示由乙罐取出的球是紅球的事件,下列結(jié)論中不正確的是()A.事件與事件不相互獨立 B.、、是兩兩互斥的事件C. D.12.設(shè)F是橢圓=1的右焦點,橢圓上至少有21個不同的點(i=1,2,3,···),,,···組成公差為d(d>0)的等差數(shù)列,則d的最大值為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.隨機(jī)變量X服從于正態(tài)分布N(2,σ2)若P(X≤0)=a,則P(2<X<4)=_____14.在正方體中,為的中點,為底面的中心,為棱上任意一點,則直線與直線所成的角是____________.15.已知雙曲線的左右焦點分別為、,點在雙曲線上,點的坐標(biāo)為,且到直線,的距離相等,則___16.甲、乙等五名志愿者被隨機(jī)地分到A,B,C,D四個不同的崗位服務(wù),每個崗位至少有一名志愿者,設(shè)隨機(jī)變量為這五名志愿者中參加A崗位服務(wù)的人數(shù),則的期望值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進(jìn)行統(tǒng)計,按分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數(shù)據(jù)).(1)求樣本容量和頻率分布直方圖中的(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機(jī)抽取3株,設(shè)隨機(jī)變量表示所抽取的3株高度在內(nèi)的株數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.18.(12分)假設(shè)某種人壽保險規(guī)定,投保人沒活過65歲,保險公司要賠償10萬元;若投保人活過65歲,則保險公司不賠償,但要給投保人一次性支付4萬元已知購買此種人壽保險的每個投保人能活過65歲的概率都為,隨機(jī)抽取4個投保人,設(shè)其中活過65歲的人數(shù)為,保險公司支出給這4人的總金額為萬元(參考數(shù)據(jù):)(1)指出X服從的分布并寫出與的關(guān)系;(2)求.(結(jié)果保留3位小數(shù))19.(12分)已知函數(shù).求不等式的解集;若,求實數(shù)的取值范圍.20.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點分別在,上運(yùn)動,若的最小值為2,求的值.21.(12分)已知數(shù)列滿足,.(Ⅰ)求的值,猜想數(shù)列的通項公式并用數(shù)學(xué)歸納法證明;(Ⅱ)令,求數(shù)列的前項和.22.(10分)在二項式的展開式中。(1)求該二項展開式中所有項的系數(shù)和的值;(2)求該二項展開式中含項的系數(shù);(3)求該二項展開式中系數(shù)最大的項。

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先求出,,再求出和,即得這只白熾燈的壽命在980小時到1040小時之間的概率.【詳解】∵,,∴,,所以,,∴.故選:A【點睛】本題主要考查正態(tài)分布的圖像和性質(zhì),考查指定區(qū)間的概率的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.2、B【解析】

先計算出基本事件的總數(shù),然后再求出該同學(xué)選到物理、地理兩門功課的基本事件的個數(shù),應(yīng)用古典概型公式求出概率.【詳解】解:由題意可知總共情況為,滿足情況為,該同學(xué)選到物理、地理兩門功課的概率為.故選B.【點睛】本題考查了古典概型公式,考查了數(shù)學(xué)運(yùn)算能力.3、C【解析】試題分析:設(shè)出等差數(shù)列的首項和公差,由a3=6,S3=11,聯(lián)立可求公差d.解:設(shè)等差數(shù)列{an}的首項為a1,公差為d,由a3=6,S3=11,得:解得:a1=1,d=1.故選C.考點:等差數(shù)列的前n項和.4、C【解析】

分析:利用一元二次不等式的解法求出中不等式的解集確定出,然后利用交集的定義求解即可.詳解:由中不等式變形得,解得,即,因為,,故選C.點睛:研究集合問題,一定要抓住元素,看元素應(yīng)滿足的屬性.研究兩集合的關(guān)系時,關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系,本題實質(zhì)求滿足屬于集合且屬于集合的元素的集合.本題需注意兩集合一個是有限集,一個是無限集,按有限集逐一驗證為妥.5、B【解析】分析:根據(jù)條件概率公式計算即可.詳解:設(shè)事件A:答對A題,事件B:答對B題,則,..故選:B.點睛:本題考查了條件概率的計算,屬于基礎(chǔ)題.6、A【解析】

先作出不等式組所表示的可行域,然后平移直線,觀察直線在軸上的截距取最大值時對應(yīng)的最優(yōu)解,將最優(yōu)解代入函數(shù)即可得出答案?!驹斀狻孔鞒霾坏仁浇M所表示的可行域如下圖所示:聯(lián)立,得,點的坐標(biāo)為,平移直線,當(dāng)該直線經(jīng)過點,它在軸上的截距取最大值,此時,取最大值,即,故選:A.【點睛】本題考查線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值問題,解題思路就是作出可行域,平移直線觀察在坐標(biāo)軸上的截距變化尋找最優(yōu)解,是??碱}型,屬于中等題。7、D【解析】

利用余弦定理角化邊后,經(jīng)過因式分解變形化簡可得結(jié)論.【詳解】因為,所以,所以,所以,所以,所以,所以或,所以或,所以三角形是等腰三角形或直角三角形.故選:D【點睛】本題考查了利用余弦定理角化邊,考查了利用余弦定理判斷三角形的形狀,屬于基礎(chǔ)題.8、B【解析】

首先根據(jù)對數(shù)函數(shù)的性質(zhì),求出函數(shù)的定義域,再很據(jù)復(fù)合函數(shù)的單調(diào)性求出f(x)的單調(diào)性,問題得以解決.【詳解】因為x﹣>0,解得x>1或﹣1<x<0,所以函數(shù)f(x)=ln(x﹣)的定義域為:(﹣1,0)∪(1,+∞).所以選項A、D不正確.當(dāng)x∈(﹣1,0)時,g(x)=x﹣是增函數(shù),因為y=lnx是增函數(shù),所以函數(shù)f(x)=ln(x-)是增函數(shù).故選B.【點睛】函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置;(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.9、A【解析】

利用復(fù)數(shù)的除法法則求解即可.【詳解】由題,,故選:A【點睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.10、B【解析】

由已知求得樣本點的中心的坐標(biāo),代入線性回歸方程求得,取求得值即可?!驹斀狻拷猓核詷颖镜闹行淖鴺?biāo)為(20,30),代入,得,取,可得,故選:B?!军c睛】本題考查線性回歸方程,明確線性回歸方程恒過樣本點的中心是關(guān)鍵,是基礎(chǔ)題.11、D【解析】分析:由題意,,是兩兩互斥事件,條件概率公式求出,,對照選項即可求出答案.詳解:由題意,,是兩兩互斥事件,,,,,而.所以D不正確.故選:D.點睛:本題考查相互獨立事件,解題的關(guān)鍵是理解題設(shè)中的各個事件,且熟練掌握相互獨立事件的概率簡潔公式,條件概率的求法,本題較復(fù)雜,正確理解事件的內(nèi)蘊(yùn)是解題的關(guān)鍵.12、B【解析】

求出橢圓點到的距離的最大值和最小值,再由等差數(shù)列的性質(zhì)得結(jié)論.【詳解】橢圓中,而的最大值為,最小值為,∴,.故選B.【點睛】本題考查橢圓的焦點弦的性質(zhì),考查等差數(shù)列的性質(zhì),難度不大.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用正態(tài)分布的對稱性,求得的值.【詳解】由條件知,故.【點睛】本小題主要考查正態(tài)分布在指定區(qū)間的概率,屬于基礎(chǔ)題.14、90°【解析】

直線在平面內(nèi)的射影與垂直.【詳解】如圖,分別是的中點,連接,易知在上,,又在正方形中,是的中點,∴(可通過證得),又正方體中,而,∴,,∴,∴直線與直線所成的角是90°.故答案為90°.【點睛】本題考查兩異面直線所成的角,由于它們所成的角為90°,因此可通過證明它們相互垂直得到,這又可通過證明線面垂直得出結(jié)論,當(dāng)然也可用三垂線定理證得.15、1【解析】

畫出圖形,根據(jù)到直線,的距離相等得到為的平分線,然后根據(jù)角平分線的性質(zhì)得到,再根據(jù)雙曲線的定義可求得.【詳解】由題意得,點A在雙曲線的右支上,又點的坐標(biāo)為,∴.畫出圖形如圖所示,,垂足分別為,由題意得,∴為的平分線,∴,即.又,∴.故答案為1.【點睛】本題考查雙曲線的定義和三角形角平分線的性質(zhì),解題的關(guān)鍵是認(rèn)真分析題意,從平面幾何圖形的性質(zhì)得到線段的比例關(guān)系,考查分析和解決問題的能力,屬于中檔題.16、【解析】分析:隨機(jī)變量的可能取的值為1,2,事件“”是指有兩人同時參加A崗位服務(wù),由此可得的分布列,進(jìn)而得到的期望.詳解:隨機(jī)變量的可能取的值為1,2,事件“”是指有兩人同時參加A崗位服務(wù),則,.即的分布列如下表所示:的數(shù)學(xué)期望.故答案為:.點睛:本題考查等可能事件的概率,考查離散型隨機(jī)變量的概率與分布列和數(shù)學(xué)期望.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】分析:(1)由題得,再利用頻率和為1求x的值.(2)先求出的可能取值為1,2,3,再求其對應(yīng)的概率,再列分布列求期望.詳解:(1)由題意可知,樣本容量.(2)由題意可知,高度在[80,90)內(nèi)的株數(shù)為5,高度在[90,100]內(nèi)的株數(shù)為2,共7株.抽取的3株中高度在[80,90)內(nèi)的株數(shù)的可能取值為1,2,3,則,123故點睛:(1)本題主要考查頻率分布直方圖中的頻數(shù)頻率等的計算,考查離散型隨機(jī)變量的分布列和期望,意在考查學(xué)生對這些知識的掌握水平和分析推理能力計算能力.(2)……為的均值或數(shù)學(xué)期望,簡稱期望,求期望的關(guān)鍵是求隨機(jī)變量的概率.18、(1);;(2)【解析】

(1)先由題意可得,服從二項分布;再由題意得到,化簡即可得出結(jié)果;(2)先由,根據(jù)(1)的結(jié)果,得到,進(jìn)而可得,即可求出結(jié)果.【詳解】(1)由題意得,服從二項分布,即,因為4個投保人中,活過65歲的人數(shù)為,則沒活過65歲的人數(shù)為,因此,即.(2)由得,所以,所以=.所以約為.【點睛】本題主要考查二項分布的問題,熟記二項分布的概率計算公式即可,屬于??碱}型.19、(1)(2)【解析】

(1)可先將寫成分段函數(shù)的形式,從而求得解集;(2)等價于,令,故即可,從而求得答案.【詳解】(1)根據(jù)題意可知:,當(dāng)時,即,解得;當(dāng)時,即,解得;當(dāng)時,即,解得.綜上,不等式的解集為;(2)等價于,令,故即可,①當(dāng)時,,此時;②當(dāng)時,,此時;當(dāng)時,,此時;綜上所述,,故,即實數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的求解,含參恒成立問題,意在考查學(xué)生的分析能力,計算能力及分類討論能力,難度中等.20、(1)(2)或.【解析】

(1)由極坐標(biāo)方程與直角坐標(biāo)方程的互化,即可得出曲線的直角坐標(biāo)方程;(2)由(1)先確定是圓心為,半徑為2的圓,再由曲線的參數(shù)方程得到其普通方程,根據(jù)點到直線的距離公式即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論