版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023高二下數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z=1+i1-i(i是虛數(shù)單位),則A.-i B.-1 C.i D.2.函數(shù)的零點所在的大致區(qū)間是()A. B.C. D.3.在各項都為正數(shù)的等差數(shù)列{an}中,若a1+a2+…+a10=30,則a5?a6的最大值等于()A.3B.6C.9D.364.設(shè),則隨機變量的分布列是:則當(dāng)在內(nèi)增大時()A.增大 B.減小C.先增大后減小 D.先減小后增大5.已知集合,則()A. B.C. D.6.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的體積為()A.2 B.4 C. D.7.某同學(xué)將收集到的六組數(shù)據(jù)制作成散點圖如圖所示,并得到其回歸直線的方程為l1:y=0.68x+a,計算其相關(guān)系數(shù)為r1,相關(guān)指數(shù)為R12.經(jīng)過分析確定點F為“離群點”,把它去掉后,再利用剩下的5組數(shù)據(jù)計算得到回歸直線的方程為l2A.r1>0,C.a(chǎn)=0.12 D.8.設(shè),,,則的值分別為()A.18, B.36, C.36, D.18,9.在平面直角坐標(biāo)系中,方程表示在x軸、y軸上的截距分別為的直線,類比到空間直角坐標(biāo)系中,在軸、軸、軸上的截距分別為的平面方程為()A. B.C. D.10.魏晉時期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”.這是一種無限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“…”代表無限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)=()A.2 B.3 C.4 D.611.已知函數(shù),若,,,則的取值范圍是()A. B. C. D.12.已知,則除以9所得的余數(shù)是A.2 B.3C.5 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知高為H的正三棱錐P-ABC的每個頂點都在半徑為R的球O的球面上,若二面角P-AB-C的正切值為4,則HR=14.已知函數(shù)設(shè)函數(shù)有4個不同的零點,則實數(shù)的取值范圍是_______.15.函數(shù)與函數(shù)在第一象限的圖象所圍成封閉圖形的面積是_____.16.已知點M拋物線上的一點,F(xiàn)為拋物線的焦點,點A在圓上,則的最小值________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標(biāo)方程為.(1)求直線的普通方程和圓的直角坐標(biāo)方程;(2)設(shè)圓與直線交于,兩點,若點的坐標(biāo)為,求.18.(12分)設(shè)函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間;(2)當(dāng)時,恒成立,求的取值范圍;(3)求證:當(dāng)時,.19.(12分)已知直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ,直線l與圓C交于A,B兩點.(1)求圓C的直角坐標(biāo)方程及弦AB的長;(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.20.(12分)設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點在軸的負(fù)半軸上.若(為原點),且,求直線的斜率.21.(12分)選修4-5:不等式選講已知函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)當(dāng)不等式的解集為時,求實數(shù)的取值范圍.22.(10分)的內(nèi)角,,所對的邊分別為,,.向量與平行.(Ⅰ)求;(Ⅱ)若,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先利用復(fù)數(shù)的除法將復(fù)數(shù)z表示為一般形式,于是可得出復(fù)數(shù)z的虛部?!驹斀狻俊遺=1+i1-i=1+i21-i1+i【點睛】本題考查復(fù)數(shù)的概念,解決復(fù)數(shù)問題,一般利用復(fù)數(shù)的四則運算律將復(fù)數(shù)表示為一把形式,考查計算能力,屬于基礎(chǔ)題。2、C【解析】
,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,∵f(3)=ln3-1>0,f(e)=lne-=1-<0,∴f(3)·f(e)<0,∴在區(qū)間(e,3)內(nèi)函數(shù)f(x)存在零點.故選C.3、C【解析】試題分析:由題設(shè),所以,又因為等差數(shù)列各項都為正數(shù),所以,當(dāng)且僅當(dāng)時等號成立,所以a5·a6的最大值等于9,故選C.考點:1、等差數(shù)列;2、基本不等式.4、D【解析】
研究方差隨變化的增大或減小規(guī)律,常用方法就是將方差用參數(shù)表示,應(yīng)用函數(shù)知識求解.本題根據(jù)方差與期望的關(guān)系,將方差表示為的二次函數(shù),二次函數(shù)的圖象和性質(zhì)解題.題目有一定綜合性,注重重要知識、基礎(chǔ)知識、運算求解能力的考查.【詳解】方法1:由分布列得,則,則當(dāng)在內(nèi)增大時,先減小后增大.方法2:則故選D.【點睛】易出現(xiàn)的錯誤有,一是數(shù)學(xué)期望、方差以及二者之間的關(guān)系掌握不熟,無從著手;二是計算能力差,不能正確得到二次函數(shù)表達式.5、D【解析】,所以,故選B.6、A【解析】
根據(jù)三視圖的特點可以分析該物體是一個直三棱柱,即可求得體積.【詳解】由三視圖可得該物體是一個以側(cè)視圖為底面的直三棱柱,所以其體積為.故選:A【點睛】此題考查三視圖的認(rèn)識,根據(jù)三視圖求幾何體的體積,關(guān)鍵在于準(zhǔn)確識別三視圖的特征.7、B【解析】
根據(jù)相關(guān)性的正負(fù)判斷r1和r2的正負(fù),根據(jù)兩個模型中回歸直線的擬合效果得出R12和R2【詳解】由圖可知兩變量呈現(xiàn)正相關(guān),故r1>0,r2>0故A正確,B不正確.又回歸直線l1:y=0.68x+a必經(jīng)過樣本中心點(3.5,2.5),所以a=2.5-0.68×3.5=0.12回歸直線l2:y=bx+0.68必經(jīng)過樣本中心點所以b=0.44,也可直接根據(jù)圖象判斷0<b<0.68(比較兩直線的傾斜程度),故D【點睛】本題考查回歸分析,考查回歸直線的性質(zhì)、相關(guān)系數(shù)、相關(guān)指數(shù)的特點,意在考查學(xué)生對這些知識點的理解,屬于中等題。8、A【解析】
由ξ~B(n,p),Eξ=12,Dξ=4,知np=12,np(1﹣p)=4,由此能求出n和p.【詳解】∵Eξ=12,Dξ=4,∴np=12,np(1﹣p)=4,∴n=18,p.故選A.【點睛】本題考查離散型隨機變量的期望和方差,解題時要注意二項分布的性質(zhì)和應(yīng)用.9、A【解析】
平面上直線方程的截距式推廣到空間中的平面方程的截距式是.【詳解】由類比推理得:若平面在軸、軸、軸上的截距分別為,則該平面的方程為:,故選A.【點睛】平面中的定理、公式等類比推理到空間中時,平面中的直線變?yōu)榭臻g中的直線或平面,平面中的面積變?yōu)榭臻g中的體積.類比推理得到的結(jié)論不一定正確,必要時要對得到的結(jié)論證明.如本題中,可令,看是否為.10、B【解析】
先閱讀理解題意,再結(jié)合題意類比推理可得:設(shè),解得,得解.【詳解】解:依題意可設(shè),解得,故選:.【點睛】本題考查類比推理,屬于基礎(chǔ)題.11、D【解析】
根據(jù)題意將問題轉(zhuǎn)化為,記,從而在上單調(diào)遞增,從而在上恒成立,利用分離參數(shù)法可得,結(jié)合題意可得即可.【詳解】設(shè),因為,所以.記,則在上單調(diào)遞增,故在上恒成立,即在上恒成立,整理得在上恒成立.因為,所以函數(shù)在上單調(diào)遞增,故有.因為,所以,即.故選:D【點睛】本題考查了導(dǎo)數(shù)在不等式恒成立中的應(yīng)用、函數(shù)單調(diào)性的應(yīng)用,屬于中檔題.12、D【解析】
根據(jù)組合數(shù)的性質(zhì),將化簡為,再展開即可得出結(jié)果.【詳解】,所以除以9的余數(shù)為1.選D.【點睛】本題考查組合數(shù)的性質(zhì),考查二項式定理的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】
取線段AB的中點D,點P在平面ABC的射影點M,利用二面角的定義得出∠PDC為二面角P-AB-C的平面角,于此得出PMDM=4,并在RtΔOMC中,由勾股定理OM2+C【詳解】取線段AB的中點D,設(shè)P在底面ABC的射影為M,則H=PM,連接CD,PD(圖略).設(shè)PM=4k,易證PD⊥AB,CD⊥AB,則∠PDC為二面角P-AB-C的平面角,從而tan∠PDC=PMDM=4k在RtΔOMC中,OM2+CM2=OC故答案為:85【點睛】本題考查二面角的定義,考查多面體的外接球,在處理多面體的外接球時,要確定球心的位置,同時在求解時可引入一些參數(shù)去表示相關(guān)邊長,可簡化計算,考查邏輯推理能力,屬于中等題。14、,【解析】
由題意可得有4個不等實根,作出的圖象,通過圖象即可得到所求范圍.【詳解】函數(shù)有4個不同的零點,即為有4個不等實根,作出的圖象,可得時,與的圖象有4個交點,故答案為:,.【點睛】本題考查函數(shù)的零點個數(shù),考查函數(shù)與方程思想、數(shù)形結(jié)合思想,考查邏輯推理能力,求解時注意準(zhǔn)確畫出函數(shù)的圖象是關(guān)鍵.15、【解析】
先求出直線與曲線的交點坐標(biāo),封閉圖形的面積是函數(shù)y=x與y=在x∈[0,1]上的積分.【詳解】解:聯(lián)立方程組可知,直線y=x與曲線y=的交點為(0,0)(1,1);∴所圍成的面積為S=.故答案為.【點睛】本題考查了定積分,找到積分區(qū)間和被積函數(shù)是解題關(guān)鍵,屬于基礎(chǔ)題.16、3【解析】
由題得拋物線的準(zhǔn)線方程為,過點作于,根據(jù)拋物線的定義將問題轉(zhuǎn)化為的最小值,根據(jù)點在圓上,判斷出當(dāng)三點共線時,有最小值,進而求得答案.【詳解】由題得拋物線的準(zhǔn)線方程為,過點作于,又,所以,因為點在圓上,且,半徑為,故當(dāng)三點共線時,,所以的最小值為3.故答案為:3【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程與定義,與圓有關(guān)的最值問題,考查了學(xué)生的轉(zhuǎn)化與化歸的思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)直線l的普通方程為;圓C的直角坐標(biāo)方程為;(2).【解析】
(1)由直線的參數(shù)方程消去參數(shù)可直接得到普通方程;由極坐標(biāo)與直角坐標(biāo)的互化公式,可直接得到圓的直角坐標(biāo)方程;(2)將直線參數(shù)方程代入圓的直角坐標(biāo)方程,結(jié)合韋達定理,根據(jù)參數(shù)的方法,即可求出結(jié)果.【詳解】(1)由直線的參數(shù)方程(為參數(shù))得直線的普通方程為由,得,即圓的直角坐標(biāo)方程為.(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,得,即,由于>0,故可設(shè),是上述方程的兩個實根,所以又直線過點P(3,),故.【點睛】本題主要考查參數(shù)方程與普通方程的互化,以及極坐標(biāo)方程與直角坐標(biāo)方程的互化,熟記公式即可,屬于??碱}型.18、(1)的單調(diào)遞減區(qū)間為;的單調(diào)遞增區(qū)間為;(2);(3)見解析.【解析】【試題分析】(1)直接對函數(shù)求導(dǎo)得,借助導(dǎo)函數(shù)值的符號與函數(shù)單調(diào)性之間的關(guān)系求出其單調(diào)區(qū)間;(2)先將不等式中參數(shù)分離分離出來可得:,再構(gòu)造函數(shù),,求導(dǎo)得,借助,推得,從而在上單調(diào)遞減,,進而求得;(3)先將不等式等價轉(zhuǎn)化為,再構(gòu)造函數(shù),求導(dǎo)可得,由(2)知時,恒成立,所以,即恒成立,故在上單調(diào)遞增,所以,因此時,有:解:(1))當(dāng)時,則,令得,所以有即時,的單調(diào)遞減區(qū)間為;的單調(diào)遞增區(qū)間為.(2)由,分離參數(shù)可得:,設(shè),,∴,又∵,∴,則在上單調(diào)遞減,∴,∴即的取值范圍為.(3)證明:等價于設(shè),∴,由(2)知時,恒成立,所以,∴恒成立∴在上單調(diào)遞增,∴,因此時,有.點睛:解答本題的第一問時,先對函數(shù)求導(dǎo)得,借助導(dǎo)函數(shù)值的符號與函數(shù)單調(diào)性之間的關(guān)系求出其單調(diào)區(qū)間;求解第二問時,先將不等式中參數(shù)分離出來可得,再構(gòu)造函數(shù),,求導(dǎo)得,借助,推得,從而在上單調(diào)遞減,,進而求得;第三問的證明過程中,先將不等式等價轉(zhuǎn)化為,再構(gòu)造函數(shù),求導(dǎo)可得,由(2)知時,恒成立,所以,即恒成立,故在上單調(diào)遞增,所以,因此證得當(dāng)時,不等式成立。19、(1)(x-2)2+y2=4;;(2)2+.【解析】
(1)圓C的極坐標(biāo)方程化為直角坐標(biāo)方程,直線l的參數(shù)方程代入圓C的的直角坐標(biāo)方程,利用直線參數(shù)方程的幾何意義,即可求解;(2)要求△ABP的面積的最大值,只需求出點P到直線l距離的最大值,將點P坐標(biāo)設(shè)為圓方程的參數(shù)形式,利用點到直線的距離公式以及三角函數(shù)的有界性,即可求解.【詳解】(1)由ρ=4cosθ得ρ2=4ρcosθ,所以x2+y2-4x=0,所以圓C的直角坐標(biāo)方程為(x-2)2+y2=4.設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2.將直線l的參數(shù)方程代入圓C:(x-2)2+y2=4,并整理得t2+t=0,解得t1=0,t2=-.所以直線l被圓C截得的弦AB的長為|t1-t2|=.(2)由題意得,直線l的普通方程為x-y-4=0.圓C的參數(shù)方程為(θ為參數(shù)),可設(shè)圓C上的動點P(2+2cosθ,2sinθ),則點P到直線l的距離d=,當(dāng)=-1時,d取得最大值,且d的最大值為2+.所以S△ABP=××(2+)=2+,即△ABP的面積的最大值為2+.【點睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程互化,考查直線參數(shù)方程幾何意義的應(yīng)用,以及利用圓的參數(shù)方程求最值,屬于中檔題.20、(Ⅰ)(Ⅱ)或.【解析】
(Ⅰ)由題意得到關(guān)于a,b,c的方程,解方程可得橢圓方程;(Ⅱ)聯(lián)立直線方程與橢圓方程確定點P的坐標(biāo),從而可得OP的斜率,然后利用斜率公式可得MN的斜率表達式,最后利用直線垂直的充分必要條件得到關(guān)于斜率的方程,解方程可得直線的斜率.【詳解】(Ⅰ)設(shè)橢圓的半焦距為,依題意,,又,可得,b=2,c=1.所以,橢圓方程為.(Ⅱ)由題意,設(shè).設(shè)直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【人教版九上歷史】21天打卡計劃(填空版)
- 2025包船運輸合同范文
- 2025關(guān)于合同糾紛起訴狀范文
- 2024年度四川省公共營養(yǎng)師之四級營養(yǎng)師考試題庫
- 2025北京朝陽初二(上)期末數(shù)學(xué)真題試卷(含答案解析)
- 2024年IT專業(yè)培訓(xùn)行業(yè)市場深度評估及投資策略咨詢報告
- 中國透明膠帶市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 嬰幼兒食品項目可行性研究報告
- 鐵路道岔項目綜合評估報告
- 2025房產(chǎn)抵押合同書范文
- 舉高消防車基礎(chǔ)知識
- 工程倫理課后習(xí)題答案(打印版)
- 2022年成都溫江興蓉西城市運營集團有限公司招聘筆試試題及答案解析
- 空氣、物表地面消毒登記記錄
- 急性腦梗死診治指南
- 檢察院分級保護項目技術(shù)方案
- 土木工程建筑中混凝土裂縫的施工處理技術(shù)畢業(yè)論文
- 水電站工程地質(zhì)勘察報告
- 電站屏柜改造安裝二次工程施工組織設(shè)計
- DB42∕T 1795-2021 微動勘探技術(shù)規(guī)程
- 大潤發(fā)的企業(yè)文化
評論
0/150
提交評論