版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
High-RateContinuousProductionofLacticAcidbyLactobacillusrhamnosusinaTwo-StageMembraneCell-RecycleBioreactorSunhoonKwon,Ik-KeunYoo,WooGiLee,HoNamChang,YongKeunChangDepartmentofChemicalEngineeringandBioProcessEngineeringResearchCenter,KoreaAdvancedInstituteofScienceandTechnology,373-1Kusong-dong,Yusong-gu,Taejon305-701,SouthKorea;E-mail:hnchang@kaist.ac.krAbstractItisimportanttoproduceL(+)-lacticacidatthelowestcostpossibleforlacticacidtobecomeacandidatemonomermaterialforpromisingbiodegradablepolylacticacid.Inanefforttodevelopahigh-ratebioreactorthatprovideshighproductivityalongwithahighconcentrationoflacticacid,theperformanceofmembranecellrecyclebioreactor(MCRB)wasinvestigatedviaexperimentalstudiesandsimulationoptimization.Duetogreatlyincreasedcelldensity,highlacticacidproductivity,21.6gL?1h?1,wasobtainedinthereactor.Thelacticacidconcentration,however,couldnotbeincreasedhigherthan83g/L.Whenanadditionalcontinuousstirredtankreactor(CSTR)wasattachednexttotheMCRBahigherlacticacidconcentrationof87g/Lwasproducedatsignificantproductivityexpense.WhenthetwoMCRBswereconnectedinseries,92g/Llacticacidcouldbeproducedwithaproductivityof57gL?1h?1,thehighestproductivityamongthereportsofL(+)-lacticacidthatobtainedlacticacidconcentrationhigherthan85g/Lusingglucosesubstrate.Additionally,theinvestigationoflacticacidfermentationkineticsresultedinasuccessfulmodelthatrepresentsthecharacteristicsoflacticacidfermentationbyLactobacillusrhamnosus.ThemodelwasfoundtobeapplicabletomostoftheexistingdatawithMCRBsandwasingoodagreementwithLevenspiel’sproduct-inhibitionmodel,andtheLuedeking-Piretequationforproduct-formationkineticsappearedtobeeffectiveinrepresentingthefermentationkinetics.Therewasadistinctivedifferenceintheproductionpotentialofcells(cell-density-relatedparameterinLuedeking-Piretequation)aslacticacidconcentrationincreasesover55g/L,andthisfindingledtoamorepreciseestimationofbioreactorperformance.?2001JohnWiley&Sons,Inc.BiotechnolBioeng73:25–34,2001.Keywords:Lactobacillusrhamnosus;lacticacid;highproductivity;cellrecycle;membranebioreactor
INTRODUCTIONTheefficiencyofthemembranecell-recyclebioreactor(MCRB)wassuccessfullydemonstratedinanumberofpreviousstudiesofthehigh-volumetricproductivityoflacticacid.Withgreatlyincreaseddensityofbiocatalysts,i.e.,microbialcells,thevolumetricproductivityoflacticacidcouldgoupto160gL?1h?1asreportedinthestudyofOhleyeretal.(1985),whichismorethan20timeshigherthanthatoftheconventionalbatchandchemostatprocesses.However,thehighproductivityisnottheonlyrequirementfortheeconomicfeasibilityoftheprocess.TimmerandKromkamp(1994)foundthattheprocessmightbeprimarilyinfluencedbyproductioncapacityandproductconcentrationandtoalesserextentbythevolumetricproductivitywhenannuallacticacidproductioncapacityrosetoashighas4540metrictons.Incaselacticacidconcentrationissignificantlylow,theenergycostforwaterremovalinthedownstreamprocessoffsetsthebenefitsoftheincreasedproductivity.Fromthispoint,MCRBhasanimportantproblemtobetackled:Theconcentrationsoflacticacidaresignificantlylowwhencomparedwithbatchprocesseswherethelacticacidconcentrationabove120g/Liseasilyattainable.Exceptforareportshowing117g/LD(?)-lacticacidwithavolumetricproductivityof84gL?1h?1(MehaiaandCheryan,1987),allotherMCRBoperationsresultedinlacticacidconcentrationsoflessthan90g/Land,moreover,mostofthemhadconcentrationsbelow60g/L(Cheryan,1998;Litchfield,1996;Ohleyeretal.,1985).ThemicroorganismscannotgrowaboveacertainrangeoflacticacidconcentrationandtheMCRBsarerunundercontinuousmannerwithcontinuousbleedingofcellstopreventthelossoffluiditythatoccurswhencellconcentrationgoestoohigh.Thus,toenhancetheeconomicaladvantageoftheMCRBprocess,methodsthatincreasethelacticacidconcentrationalongwiththehigh-celldensityarerequired.Someauthors,whoconsideredthispersistentproblemoflow-productconcentration,conductedstudiestoobtainhigherlacticacidconcentrationinMCRB.Xavieretal.(1995)reportedalacticacidconcentrationof90g/Lwithaproductivityof36gL?1h?1,whileTejayadiandCheryan(1995)achieved89g/Land22gL?1h?1oflacticacidconcentationandproductivity,respectively.Atypicalapproachtoovercometheabove-mentionedproblem,alow-productconcentrationduetosevereproductinhibition,istheuseofaplug-flowreactor,whichcanbeapproximatedbyseveralcontinuous-stirred-tankreceptors(CSTRs)inseries(deGooijeretal.,1996;KellerandGerhardt,1975;LuedekingandPiret,1959b;Levenspiel,1984).TheadvantagesoftheCSTRs-in-seriesagainstasingleCSTRespeciallyinlacticacidproductionwererevealedbyothersintwo-andthree-stageCSTRs(Aeschlimannetal.,1990;Bruno-Ba′rcenaetal.,1999;Mulliganetal.,1991):increasedproductivityandconcentrationoflacticacidviapartlyseparatingcellgrowthandlacticacidproductionphases;increasedlacticacidyieldattheexpenseofbiomassformationatalatterstage;highpurityofthelacticacidisomer,L(+)-lacticacidviaincreasedpopulationoffreshcells;andreducedusageofacostlynutrient,yeastextract.Inanefforttocombinetheadvantageofboththebioreactorconfigurations—MCRBandmulti-stagedbioreactor—Kuloziketal.(1992)investigatedtheperformanceofaseven-stagedcascadereactorwithcellrecycle.Cellsintheoutflowofthelastreactorwerefivefoldconcentratedbyamicrofilterandrecycledbacktothefirstreactor.Incomparisonwithasingle-stageMCRB,thecascadereactorshowed4timeshigherproductivity,28gL?1h?1,withcompleteutilizationof100g/Llactose,inwhichthecellconcentrationsweremaintainedat20g/Landthelacticacidconcentrationswerearound72g/L.Inthisstudy,theperformanceofanewbioreactorconfiguration,twoMCRBsinseries,wasinvestigatedaimingatthehighestvolumetricproductivityeverobtainedalongwiththelacticacidconcentrationashighaspossible.Moreover,asimulationstudywasconductedtoestimatetheperformancelimitofMCRBwithanunstructuredkineticmodel,whichisvalidatedbytheexperimentresults.MATERIALSANDMETHODSMicroorganismandCultureConditionsLactobacillusrhamnosus(ATCC10863),anobligatoryanaerobichomofermentativeL(+)-lacticacidproducer,wasobtainedfromAmericanTypeCultureCollection(Rockville,MD).One-mLstockcultureswerestoredat?76°CinLactobacilliMRSmedium(Difco,Detroit,MI)with25%(v/v)glycerol.Precultureswerepreparedbytransferringastockcultureto200mLofMRSmediumandincubatedat42°Cfor12handtransferredtothemainculture.Theculturetemperaturewas42°CandtheculturepHwascontrolledat6.0withammoniawater(ca.8N).ForMCRBoperationsthebasalmediumhadthefollowingcomponentsperliter:0.2gNa3-Citrate·2H2O,1.0gKH2PO4,0.2gMgSO4·7H2O,0.03gMnSO4·H2O,0.03gFeSO4·7H2O,and0.015mLsulfuricacid.TheconcentrationsofglucoseandyeastextractwillbedescribedintheResultssection.Allthemediacomponentswereheatsterilizedtogetherat121°Cfor100minexceptforyeastextractthatwasseparatelysterilizedfor15min.Theculturevolumenotedintheresultsincludesthebrothvolumeintherecyclestream.AnalyticalMethodsCellgrowthwasmeasuredbyaspectrophotometer(PharmaciaUltrospec3000,Cambridge,UK)atawavelengthof620nm.Drycellconcentrationwascalculatedfromtheopticaldensity(OD620)withalinearcorrelationfactor(oneOD62040.32g-drycellweightperliter).Concentrationsoflacticacidandglucoseweredeterminedbyahighperformanceliquidchromatography(HPLC)systemequippedwitharefractive-indexdetector(HitachiL-6000,Tokyo,Japan).AnHPLCcolumn(Aminex87H,Bio-Rad,Richmond,CA)wasusedwith0.005Msulfuricacidasthemobilephaseatanelutionspeedof0.6mL/minwhilethecolumntemperaturewasmaintainedat50°C.Theconcentrationstandardsof1.0Mlacticacid(Fluka,Buchs,Switzerland)and10g/Lglucose(Sigma,St.Louis,MO)wereusedfortheHPLCanalysis.MembraneCell-RecycleBioreactor(MCRB)Intheexperimentsofasingle-stageMCRB,a400-mLwater-jacketedglassreactorwasemployed,thatwasequippedwithahollow-fiberfiltrationunitUFP-100-H-4X2TCA(100kNMWC,0.065m2filtrationarea;A/GTechnologyCorporation,MA).Aperistalticpump,07090-40(Cole-Parmer,IL)wasusedtocirculatetheculturebroththroughthemembraneunitwithaflowrateofca.100mL/min.Forthetwo-stageoperations,twoidenticalMCRBswereseriallyconnected.EachMCRBconsistedofa1-Lglassreactorattachedwithaplate-and-framefiltrationunit,Pellicon2BIOMAX100V(100kNMWC,0.1m2filtrationarea,Millipore,Bedford,MA),andadiaphragmpump,P-07090-40(Cole-Parmer)forcellrecyclewithaflowrateofca.600mL/min.TheMCRBwassterilizedwith50%(v/v)ethanolandwashedthoroughlywithsterilewaterbeforeinoculation.Inoperation,afreshmediumwasfedcontinuouslyintothereactorwhilefilterpermeatewassimultaneouslypumpedout.Topreventthecelldensityfromgoingoveracertainlimit,whichcausesthelossoffilterfunctionality,smallamountsofculturebrothwerecontinuouslydrawnoutfromthereactor(bleedflow).Inthetwostageoperation,thebleedandpermeateflowfromthefirstreactorwerefedtogetherintothesecond.NumericalMethodsTheleastsquaresregressionwasusedtoestimatetheparametersofthefermentationkinetics.Numericalintegrationtofindsteady-statevaluesandconstrainedmultivariableoptimizationtofindtheoptimaloperationvariableswereperformedwiththehelpofasoftwarepackage,Matlab5.0(TheMathworks,Inc.,USA).Theconstraintsutilizedintheoptimizationwerethemaximumcelldensity(Xm)andthemaximumremainingglucoseconcentration(S).DISCUSSIONToincreasethebioreactorperformancefortheproductionoflacticacid,acontinuouslacticacidfermentationsystemcoupledwithmembranecell-separationtechnique(MCRB)hasbeenstudied.Bygreatlyincreasedcelldensityinthereactorvolumetricproductivitycouldbeincreasedover10timesthantheconventionalbatchandcontinuousfermentation.However,theconcentrationoflacticacidproduced,amajorfactorforeconomicfeasibility,couldnotbeincreasedhigherthan95g/Lbeyondwhichcellgrowthisinhibitedalmostcompletely.InthepreliminaryexperimentswithsingleMCRB,lowlacticacidconcentrationsaround51g/Lwereobtainedevenwhenthecelldensitywasmaintainedathigherthan90g/L(Fig.4).WhenaCSTRwith9timeslargervolumethantheMCRBwasattached,intendingforalongerreactiontimeforthecellsintheMCRBoutflow,87g/Llacticacidcouldbeobtainedwithagreatsacrificeintheproductivity(Fig.6).Itwasconcludedthathigherlacticacidconcentrationwithhighproductivitycouldbeobtainableifthesecondreactor,CSTR,hadbeenreplacedwithanotherMCRB,whichmadeupthetwo-stagebioreactorwithcell-recycleatbothstages.WiththetwoMCRBsinseries,92g/Loflacticacidwasobtainedatahighproductivityof57gL?1h?1(Fig.12).Inconclusion,asystematicapproachwithMCRBswithmultistagedoperationcanbecarriedouttopredictoptimalperformancesoflacticacidproduction,whichexperimentallyprovedthattwostageMCRBscanproducelacticacidinahighconcentrationwithgreatlyincreasedvolumetricproductivity(typeA).References[1]AeschlimannA,StasiLD,vonStockarU.1990.ContinuousproductionoflacticacidfromwheypermeatebyLactobacillushelveticusintwochemostatsinseries.EnzymeMicrobTechnol12:926–932.[2]AmraneA,PrigentY.1999.AnalysisofgrowthandproductioncouplingforbatchculturesofLactobacillushelveticuswiththehelpofanunstructuredmodel.ProcBiochem34:1–10.[3]BerryAR,FrancoCMM,ZhangW,MiddelbergAPJ.1999.GrowthandlacticacidproductioninbatchcultureofLactobacillusrhamnosusinadefinedmedium.BiotechnolLett21:163–167.[4]BibalB,KappC,GomaG,PareilleuxA.1989.ContinuouscultureofStreptococcuscremorisonlactoseusingvariousmediumconditions.ApplMicrobiolBiotechnol32:155–159.[5]BibalB,VayssierY,GomaG,PareilleuxA.1991.HighconcentrationcultivationofLactococcuscremorisinacell-recyclereactor.BiotechnolBioeng37:746–754.[6]Bo¨rgardtsP,KrischkeW,Tro¨schW,BrunnerH.1998.Integratedbioprocessforthesimultaneousproductionoflacticacidanddairysewagetreatment.BioprocessEng19:321–329.[7]Bruno-Ba′rcenaJM,RagoutAL,CordobaPR,Sin?erizF.1999.ContinuousproductionofL(+)-lacticacidbyLactobacilluscaseiintwo-stagesystems.ApplMicrobiolBiotechnol51:316–324.[8]CheryanM.1998.Ultrafiltrationandmicrofiltrationhandbook.Lancaster,PA:TechnomicPublishingCompany.467p.[9]deGooijerCD,BakkerWAM,BeeftinkHH,TramperJ.1996.Bioreactorsinseries:Anoverviewofdesignproceduresandpracticalapplications.EnzymeMicrobTechnol18:202–219.[10]DuttaSK,MukherjeeA,ChakrabortyP.1996.Effectofproductinhibitiononlacticacidfermentation:Simulationandmodelling.ApplMicrobiolBiotechnol46:410–413.[11]Gonc?alvesLMD,XavierAMRB,AlmeidaJS,CarrondoMJT.1991.Concomitantsubstrateandproductinhibitionkineticsinlacticacidproduction.EnzymeMicrobTechnol13:314–319.[12]KellerAK,GerhardtP.1975.Continuouslacticacidfermentationofwheytoproducearuminantfeedsupplementhighincrudeprotein.BiotechnolBioeng17:997–1018.[13]KulozikU,HammelehleB,PfeiferJ,KesslerHG.1992.Highreactionratecontinuousbioconversionprocessinatubularreactorwithnarrowresidencetimedistributionsfortheproductionoflacticacid.JBiotechnol22:107–116.[14]KulozikU,WildeJ.1999.RapidlacticacidproductionathighcellconcentrationsinwheyultrafiltratebyLactobacillushelveticus.EnzymeMicrobTechnol24:297–302.[15]KwonS,LeePC,LeeEG,ChangYK,ChangHN.2000.ProductionoflacticacidbyLactobacillusrhamnosuswithvitamin-supplementedsoybeanhydrolysate.EnzymeMicrobTechnol26:209–215.[16]LevenspielO.1980.TheMonodequation:Arevisitandageneralizationtoproductinhibitionsituations.BiotechnolBioeng22:1671–1687.LevenspielO.1984.Chemicalreactionengineering.NewYork:JohnWiley&Sons.p124–157.[17]LitchfieldJH.1996.Microbiologicalproductionoflacticacid.In:NeidlemanSL,LaskinAI,editors.Advancesinappliedmicrobiology.Vol42.SanDiego:AcademicPress.69p.[18]LuedekingR,PiretEL.1959a.Akineticstudyofthelacticacidfermentation.BatchprocessatcontrolledpH.JBiochemMicrobiolTechnolEng1:393–412.[19]LuedekingR,PiretEL.1959b.Transientandsteadystatesincontinuousfermentation.TheoryandExperiment.JBiochemMicrobiolTechnolEng1:431–459.[20]MajorNC,BullAT.1985.LacticacidproductivityofacontinuouscultureofLactobacillusdelbrueckii.BiotechnolLett7:401–405.
利用鼠李糖乳桿菌在兩級細胞膜循環(huán)生物反應(yīng)器中高速連續(xù)生產(chǎn)乳酸——SunhoonKwon,YongKeunChang單位:韓國高等科學技術(shù)學院,化學與生物工程研究中心,E-mail:hnchang@kaist.ac.kr摘要眾所周知,乳酸是可生物降解材料聚乳酸的主要原料,所以找到以一種以最低的成本來生產(chǎn)L(+)-乳酸的方法具有非常重大的意義。為了找到一種可以高速地生產(chǎn)高濃度乳酸的生物反應(yīng)器,我們對膜循環(huán)生物反應(yīng)器(MCRB)的性能進行了研究,并進行了實驗仿真優(yōu)化。由于大大增加了細胞濃度,這個反應(yīng)器的乳酸生產(chǎn)力可達到21.6gL-1h-1。但乳酸濃度卻不能超過83g/L,當額外增加一個連續(xù)攪拌反應(yīng)釜(CSTR)附到MCRB旁邊時,可以大幅度的提高生產(chǎn)速率,乳酸濃度也可以提高到87g/L,當兩個MCRBs串聯(lián)在一起時,乳酸的生產(chǎn)力速率達到57gL-1h-1,最終溶液中的乳酸濃度為92g/L,這比以前所報道的使用葡萄糖基生產(chǎn)L(+)乳酸濃度超過85g/L的最高的生產(chǎn)率還要高。此外,研究乳酸發(fā)酵動力學產(chǎn)生了以鼠李糖乳桿菌發(fā)酵生產(chǎn)乳酸為代表的成功典范,該模型被認為是適用于大多數(shù)現(xiàn)有的MCRBs的數(shù)據(jù),并且很好地吻合了Levenspiel的產(chǎn)品抑制模型,Luedeking-Piret產(chǎn)品形成動力學方程似乎是有效的代表發(fā)酵動力學。然而具有生產(chǎn)潛力的細胞(細胞密度相關(guān)參數(shù)Luedeking-Piret方程)生產(chǎn)乳酸的濃度超過55g/L時,卻又有一個與眾不同的差異,而這一結(jié)果會讓我們更進一步地精確估計生物反應(yīng)器的性能。?2001JohnWiley&Sons出版公司生物Bioeng73:25-34,2001。關(guān)鍵詞:鼠李糖乳桿菌;乳酸;高生產(chǎn)力;細胞循環(huán);膜生物反應(yīng)器
1前言膜細胞循環(huán)生物反應(yīng)器(MCRB)的生產(chǎn)效率成功地證實了一些以往關(guān)于高容積生產(chǎn)乳酸的研究。Ohleyer等的研究報告指出,通過大量增加生物催化劑,即微生物細胞,乳酸的生產(chǎn)力可高達160gL?1h?1。(1985年),這比常規(guī)批次和恒化的生產(chǎn)工藝高出20倍以上。然而,高生產(chǎn)力并不是唯一的要求,這種工藝還必須在經(jīng)濟上有可行性。TimmerandKromkamp(1994年)發(fā)現(xiàn),這一工藝可能主要受生產(chǎn)能力和產(chǎn)品的集中的影響,在較小程度時當年這種工藝生產(chǎn)乳酸的產(chǎn)能上升到高達4540噸。如乳酸濃度顯著低,能源成本中的水在去除抵消下游過程的好處,提高了生產(chǎn)力。從這個角度上講,MCRB有一個重要的問題有待解決:在乳酸濃度顯著低相比,間歇過程的乳酸濃度122g/L的是容易實現(xiàn)的。此外,還有一份報告顯示以84gL?1h?1的生產(chǎn)速率得到的D(+)L乳酸最終濃度為117g/L(Mehaia和Cheryan,1987年),而除部分MCRB工藝生產(chǎn)出的乳酸濃度低于90/g/L外所有其他的大多數(shù)生產(chǎn)的濃度低于60g/L的(Cheryan,1998年;里奇菲爾德,1996年;Ohleyer等,1985)。微生物無法在超過一定濃度的乳酸條件下生長,因此可以通過用MCRBs工藝進行連續(xù)放出細胞,以防止損失的流動性時所產(chǎn)生的細胞濃度不會太高。因此,為加強MCRB工藝的經(jīng)濟優(yōu)勢的方法有,隨著高密度的要求增加乳酸濃度。一些考慮到這個長期存在的低濃度產(chǎn)品問題的作者對他進行了研究,并通過MCRB工藝獲得了較高濃度的乳酸。哈維爾等人。(1995年)和Tejayadi和Cheryan(1995年)分別發(fā)表了以36gL?1h?1的生產(chǎn)速率得到濃度為90g/L的乳酸和以22gL?1h?1的生產(chǎn)速率得到濃度為89g/L的乳酸的報道。產(chǎn)品的濃度低是由于乳酸菌受到了嚴重抑制,這里有一個很好的辦法來克服上述問題,我們可以通過使用推流反應(yīng)器,它類似于很多連續(xù)化攪拌式受體(CSTRs)結(jié)合在一起(日Gooijer等。996年;Keller和戈哈德,1975年;Luedeking和Piret,1959年;Levenspiel,1984年)。CSTRs的優(yōu)勢在一系列針對單一CSTR中特別是在乳酸生產(chǎn)中所揭示的其他兩個和三個階段CSTRs(艾緒里曼等人。1990年;布魯諾-Ba'rcena等。1999年;根等。1991年)通過部分分離細胞的生長和乳酸生產(chǎn)階段提高乳酸的生產(chǎn)力和濃度,增加乳酸產(chǎn)量為代價的生物形成的后期;高純度的乳酸異構(gòu)體長,L(+)乳酸菌通過增加新鮮細胞的數(shù)量;同時減少使用昂貴的養(yǎng)分——酵母膏。為了結(jié)合雙方的優(yōu)勢,生物反應(yīng)器的配置MCRB和多階段生物反應(yīng)器Kulozik等。(1992)進行了一項七級聯(lián)反應(yīng)器與細胞循環(huán)的研究。最后一個反應(yīng)器中流出的細胞溶液通過收集器集中再生回到第一座反應(yīng)器中,相對于單級MCRB,梯級反應(yīng)器得到的生產(chǎn)率要高出4倍。達到28克L-1h-1,乳糖完整的利用率為100g/L,其中的細胞濃度保持在20g/L和的乳酸濃度約為72g/L。在這項研究中,對新型生物反應(yīng)器的配置,即兩個MCRBs串聯(lián)的性能進行了研究,旨在在最高容積生產(chǎn)力的情況下不斷得到乳酸且其濃度盡可能高。此外,對估計MCRB的性能極限與非結(jié)構(gòu)化的動力學模型,進行了模擬研究,通過這個實驗驗證了結(jié)果。
2材料與方法2.1微生物培養(yǎng)法及培養(yǎng)條件鼠李糖乳桿菌(ATCC10863),一種同型發(fā)酵的具有極強的厭氧性的L(+)乳酸生產(chǎn)菌,它是從美國特種培養(yǎng)物保藏中心獲得的(位于美國馬里蘭州羅克維爾市)。一毫升庫乳桿菌菌種與(培養(yǎng)基,底特律,MI)和的25%(V/V)的甘油混合后在-76°C的條件下保存,Precultures準備通過在MRS培養(yǎng)基中,在42°C的條件下培養(yǎng)12小時,將菌株培養(yǎng)到200毫升,并轉(zhuǎn)移到主要化??刂婆囵B(yǎng)溫度為42℃和通過使用氨水調(diào)節(jié)pH到6.0,MCRB工藝的培養(yǎng)基要有以下組成部分每升:0.2Na3-Citrate·2H2O,1.0gKH2PO4,0.2gMgSO4·7H2O,0.03gMnSO4·H2O,0.03gFeSO4·7H2O,和0.015mL硫酸。糖的濃度和酵母提取物將在結(jié)論中指出。除酵母提取物是單獨滅菌15分鐘外,所有培養(yǎng)基一起在121°C的條件下滅菌100分鐘。在結(jié)論中談到的培養(yǎng)體積包括循環(huán)流體培養(yǎng)基的體積。2.2分析方法細胞生長可通過分光光度計在波長為620納米時測定(法瑪西亞Ultrospec3000,英國劍橋)一般可由干細胞濃度與光密度(OD620)的線性相關(guān)系數(shù)(1OD62040.32克,干重每公升)計算出來。乳酸的濃度和葡萄糖含量可由配備了折射率檢測器系統(tǒng)的高效液相色譜儀(HPLC)(日立L型6000,日本東京)測定。HPLC柱使用時(Aminex87H,酶標儀,里奇蒙,CA)以0.005M硫酸為流動相,在洗脫速度為0.6毫升/分鐘,而柱溫保持在50°C的濃度標準為1.0米乳酸(鹽,布克斯,瑞士)和10g/L的葡萄糖(六西格瑪,圣路易斯,密蘇里州)用于高效液相色譜分析中。2.3膜細胞循環(huán)生物反應(yīng)器(MCRB)在單級MCRB的實驗中,要應(yīng)用到如下實驗器材:一;400毫升水套,它采用玻璃反應(yīng)器并配備了中空纖維超微粒過濾裝置-100-H的4X2TCA(100kNMWC,0.065平方米過濾面積;阿/g技術(shù)公司,馬)。二:蠕動泵,07090-40型(科爾-Parmer,白細胞介素)CA以100毫升/分鐘的速度推動發(fā)發(fā)酵液通過膜單元。在兩個階段的行動,兩個相同的MCRBs是串行連接。每個MCRB包括一個1一L玻璃反應(yīng)堆附有板和幀過濾單元,一個Pellicon2BIOMAX100V的(100kNMWC,0.1平方米過濾面積,超純水,貝德福德,馬)與隔膜泵,和一個P-07090-40(科爾Parmer)的細胞再生裝置,其CA流速為600毫升/分鐘。MCRB在接種前需要用含50%(V/V)乙醇的無菌水徹底清洗。在操作過程中,需不斷向發(fā)酵罐中加入新的培養(yǎng)基同時排出產(chǎn)物。為了防止細胞密度去超過一定限度,造成過濾功能下降,需要從發(fā)酵罐中不斷抽出少量的發(fā)酵液。在這兩個階段發(fā)酵過程中,從第一階段流出的發(fā)酵液用于第二階段中。2.4數(shù)值分析方法發(fā)酵動力學的參數(shù)可以用最小二乘回歸來估算。利用Matlab5.0(MathWorks公司,公司,美國)軟件進行數(shù)值積分找到穩(wěn)態(tài)值和約束多變量優(yōu)化以尋找到最佳操作變量。限制利用的優(yōu)化是最大的細胞密度(Xm)和最大其余血糖濃度(s)。
討論為了提高生物反應(yīng)器產(chǎn)乳酸的性能,我們對連續(xù)乳酸發(fā)酵系統(tǒng)加上膜細胞分離技術(shù)(MCRB)進行了研究。大大增加在固定體積發(fā)酵罐中的細胞密度,生產(chǎn)率比傳統(tǒng)的間歇和連續(xù)發(fā)酵提高了10倍以上。然而,乳酸實際生產(chǎn)中,最主要因素經(jīng)濟上的可行性,此方法乳酸濃度高于95g/L時,細胞的生長幾乎完全受到抑制。在初步單MCRB實驗中,即使在細胞密度保持在高于90g/L時,得到的乳酸濃度仍然很低,約51政/L,(圖4)。當加入一個體積比MCRB大9的CSTR時,在放出細胞液之前如果讓它在在MCRB反應(yīng)器中停留更長的時間,則乳酸濃度會明顯提升,會達到87g/L圖6)。由此我們可以得出這樣的結(jié)論:在第二個反應(yīng)器CSTR與另一MCRB相連并且兩個階段的生物反應(yīng)器與細胞循環(huán)同在這兩個階段前提下,可以高速生產(chǎn)高濃度的乳酸,如果使用兩個MCRBs系列,則可以以57gL?1h?1的生產(chǎn)速率生產(chǎn)出濃度達到92g/L的乳酸(圖12)。最后,通過優(yōu)化多步驟MCRBs反應(yīng)器,可以得到預(yù)期想得到的最優(yōu)生產(chǎn)乳酸的方法,實驗證明,利用兩階段MCRBs反應(yīng)器可以高速生產(chǎn)高濃度的乳酸,從而使固定容積反應(yīng)器的生產(chǎn)效率大大提高(A型)。
參考文獻[1]AeschlimannA,StasiLD,vonStockarU.1990.ContinuousproductionoflacticacidfromwheypermeatebyLactobacillushelveticusintwochemostatsinseries.EnzymeMicrobTechnol12:926–932.[2]AmraneA,PrigentY.1999.AnalysisofgrowthandproductioncouplingforbatchculturesofLactobacillushelveticuswiththehelpofanunstructuredmodel.ProcBiochem34:1–10.[3]BerryAR,FrancoCMM,ZhangW,MiddelbergAPJ.1999.GrowthandlacticacidproductioninbatchcultureofLactobacillusrhamnosusinadefinedmedium.BiotechnolLett21:163–167.[4]BibalB,KappC,GomaG,PareilleuxA.1989.ContinuouscultureofStreptococcuscremorisonlactoseusingvariousmediumconditions.ApplMicrobiolBiotechnol32:155–159.[5]BibalB,VayssierY,GomaG,PareilleuxA.1991.HighconcentrationcultivationofLactococcuscremorisinacell-recyclereactor.BiotechnolBioeng37:746–754.[6]Bo¨rgardtsP,KrischkeW,Tro¨schW,BrunnerH.1998.Integratedbioprocessforthesimultaneousproductionoflacticacidanddairysewagetreatment.BioprocessEng19:321–329.[7]Bruno-Ba′rcenaJM,RagoutAL,CordobaPR,Sin?erizF.1999.ContinuousproductionofL(+)-lacticacidbyLactobacilluscaseiintwo-stagesystems.ApplMicrobiolBiotechnol51:316–324.[8]CheryanM.1998.Ultrafiltrationandmicrofiltrationhandbook.Lancaster,PA:TechnomicPublishingCompany.467p.[9]deGooijerCD,BakkerWAM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 考級樂理課件教學課件
- 幼兒乘機課件教學課件
- 2024年乙方接受房產(chǎn)抵債具體協(xié)議
- 2024供應(yīng)鏈管理運輸合同
- 2024年度專利申請成果轉(zhuǎn)化許可合同
- 2024年度搬廠工程安全監(jiān)督合同
- 2024年度市場營銷策劃執(zhí)行合同
- 04版無人機研發(fā)與銷售合同
- 2024年度文化藝術(shù)品收藏與展覽合同
- 2024年度無人機采購與租賃合同
- 管理人員名單及監(jiān)督電話牌
- 酸堿廢氣處理噴淋塔使用說明書
- -撫順市集裝袋廠聚烯烴集裝袋生產(chǎn)項目環(huán)境影響評價文件
- 武漢市硚口區(qū)面向社會公開招考217名社區(qū)干事(必考題)模擬卷和答案
- 小學語文人教四年級上冊(統(tǒng)編)第四單元-四上快樂讀書吧課堂實錄及評析《很久很久以前》魏佳
- 云南勞技七年級上冊家政教案
- 新思想的萌發(fā)人教版課件
- 醫(yī)療醫(yī)學獲獎品管圈匯報提高糖尿病患者胰島素筆注射技能的正確率PPT模板課件(PPT 57頁)
- 大學英語口語FoodandDrink課件
- WANG氏TBNA穿刺定位法課件
- 酒店電梯的設(shè)置及選擇運行要點管理
評論
0/150
提交評論