2023合肥數(shù)學(xué)中考考點_第1頁
2023合肥數(shù)學(xué)中考考點_第2頁
2023合肥數(shù)學(xué)中考考點_第3頁
2023合肥數(shù)學(xué)中考考點_第4頁
2023合肥數(shù)學(xué)中考考點_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第2023合肥數(shù)學(xué)中考考點

合肥數(shù)學(xué)中考考點

1.解直角三角形

1.1.銳角三角函數(shù)

銳角a的正弦、余弦和正切統(tǒng)稱∠a的三角函數(shù)。

如果∠a是Rt△ABC的一個銳角,則有

1.2.銳角三角函數(shù)的計算

1.3.解直角三角形

在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過程,叫做解直角三角形。

2.直線與圓的位置關(guān)系

2.1.直線與圓的位置關(guān)系

當(dāng)直線與圓有兩個公共點時,叫做直線與圓相交;當(dāng)直線與圓有公共點時,叫做直線與圓相切,公共點叫做切點;當(dāng)直線與圓沒有公共點時,叫做直線與圓相離。

直線與圓的位置關(guān)系有以下定理:

直線與圓相切的判定定理:

經(jīng)過半徑的外端并且垂直這條半徑的直線是圓的切線。

圓的切線性質(zhì):

經(jīng)過切點的半徑垂直于圓的切線。

2.2.切線長定理

從圓外一點作圓的切線,通常我們把圓外這一點到切點間的線段的長叫做切線長。

切線長定理:過圓外一點所作的圓的兩條切線長相等。

2.3.三角形的內(nèi)切圓

與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形的三條角平分線的交點。

3.三視圖與表面展開圖

3.1.投影

物體在光線的照射下,在某個平面內(nèi)形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的投射叫做平行投影。

可以把太陽光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。

3.2.簡單幾何體的三視圖

物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側(cè)投影面上的正投影叫做左視圖。

主視圖、左視圖和俯視圖合稱三視圖。

產(chǎn)生主視圖的投影線方向也叫做主視方向。

3.3.由三視圖描述幾何體

三視圖不僅反映了物體的形狀,而且反映了各個方向的尺寸大小。

3.4.簡單幾何體的表面展開圖

將幾何體沿著某些棱“剪開”,并使各個面連在一起,鋪平所得到的平面圖形稱為幾何體的表面展開圖。

圓柱可以看做由一個矩形ABCD繞它的一條邊BC旋轉(zhuǎn)一周,其余各邊所成的面圍成的幾何體。AB、CD旋轉(zhuǎn)所成的面就是圓柱的兩個底面,是兩個半徑相同的圓。AD旋轉(zhuǎn)所成的面就是圓柱的側(cè)面,AD不論轉(zhuǎn)動到哪個位置,都是圓柱的母線。

圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉(zhuǎn)一周,它的其余各邊所成的面圍成的一個幾何體。直角邊BC旋轉(zhuǎn)所成的面就是圓錐的底面,斜邊AB旋轉(zhuǎn)所成的面就是圓錐的側(cè)面,斜邊AB不論轉(zhuǎn)動到哪個位置,都叫做圓錐的母線。

數(shù)學(xué)中考考點分析

一、函數(shù)

①位置的確定與平面直角坐標(biāo)系

1、平面直角坐標(biāo)系內(nèi)點的特征

2、平面直角坐標(biāo)系內(nèi)點坐標(biāo)的符號與點的象限位置

3、對稱問題:P(x,y)→Q(x,-y)關(guān)于x軸對稱P(x,y)→Q(-x,y)關(guān)于y軸對稱P(x,y)→Q(-x,-y)關(guān)于原點對稱

4、變量、自變量、因變量、函數(shù)的定義

5、函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法)56、函數(shù)的圖象:變量的變化趨勢描述

②一次函數(shù)與正比例函數(shù)

7、一次函數(shù)的定義與正比例函數(shù)的定義

8、一次函數(shù)的圖象:直線,畫法

9、一次函數(shù)的性質(zhì)(增減性)

10、一次函數(shù)y=kx+b(k≠0)中k、b符號與圖象位置

11、待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)

12、一次函數(shù)的平移問題

13、一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)

14、一次函數(shù)的實際應(yīng)用

15、一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合

③反比例函數(shù)

16、反比例函數(shù)的定義

17、反比例函數(shù)解析式的確定

18、反比例函數(shù)的圖象:雙曲線

19、反比例函數(shù)的性質(zhì)(增減性質(zhì))

20、反比例函數(shù)的實際應(yīng)用

數(shù)學(xué)中考考點

二次函數(shù)(quadraticfunction)是指未知數(shù)的次數(shù)為二次的多項式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

一般的,自變量x和因變量y之間存在如下關(guān)系:

一般式

y=ax∧2;+bx+c(a≠0,a、b、c為常數(shù)),頂點坐標(biāo)為(-b/2a,-(4ac-b∧2)/4a);

頂點式

y=a(x+m)∧2+k(a≠0,a、m、k為常數(shù))或y=a(x-h)∧2+k(a≠0,a、h、k為常數(shù)),頂點坐標(biāo)為(-m,k)對稱軸為x=-m,頂點的位置特征和圖像的開口方向與函數(shù)y=ax∧2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點式;

交點式

y=a(x-x1)(x-x2)[僅限于與x軸有交點A(x1,0)和B(x2,0)的拋物線];

重要概念:a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下。a的絕對值還可以決定開口大小,a的絕對值越大開口就越小,a的絕對值越小開口就越大。

牛頓插值公式(已知三點求函數(shù)解析式)

y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引導(dǎo)出交點式的系數(shù)a=y1/(x1_x2)(y1為截距)

求根公式

二次函數(shù)表達(dá)式的右邊通常為二次三項式。

求根公式

x是自變量,y是x的二次函數(shù)

x1,x2=[-b±(√(b^2-4ac))]/2a

(即一元二次方程求根公式)(如右圖)

求根的方法還有因式分解法和配方法

在平面直角坐標(biāo)系中作出二次函數(shù)y=2x的平方的圖像,

可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。

不同的二次函數(shù)圖像

如果所畫圖形準(zhǔn)確無誤,那么二次函數(shù)將是由一般式平移得到的。

注意:草圖要有1本身圖像,旁邊注明函數(shù)。

2畫出對稱軸,并注明X=什么

3與X軸交點坐標(biāo),與Y軸交點坐標(biāo),頂點坐標(biāo)。拋物線的性質(zhì)

軸對稱

1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

頂點

2.拋物線有一個頂點P,坐標(biāo)為P(-b/2a,4ac-b^2;)/4a)

當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2;-4ac=0時,P在x軸上。

開口

3.二次項系數(shù)a決定拋物線的開口方向和大小。

當(dāng)a0時,拋物線向上開口;當(dāng)a0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

決定對稱軸位置的因素

4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

當(dāng)a與b同號時(即ab0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a0,所以b/2a要大于0,所以a、b要同號

當(dāng)a與b異號時(即ab0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號

可簡單記憶為左同右異,即當(dāng)a與b同號時(即ab0),對稱軸在y軸左;當(dāng)a與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論