大一下學期高等數(shù)學期中考試試卷及答案word版本_第1頁
大一下學期高等數(shù)學期中考試試卷及答案word版本_第2頁
大一下學期高等數(shù)學期中考試試卷及答案word版本_第3頁
大一下學期高等數(shù)學期中考試試卷及答案word版本_第4頁
大一下學期高等數(shù)學期中考試試卷及答案word版本_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

千里之行,始于足下讓知識帶有溫度。第第2頁/共2頁精品文檔推薦大一下學期高等數(shù)學期中考試試卷及答案word版本大一下學期高等數(shù)學期中考試試卷及答案

大一其次學期高等數(shù)學期中考試試卷

一、填空題(本題滿分15分,共有5道小題,每道小題3分),請將合適的答案填在空中。

1、已知球面的一條直徑的兩個端點為()532,,-和()314-,,,則該球面的方程為______________________

2、函數(shù)ln(ux=在點(1,0,1)A處沿點A指向點(3,2,2)B-方向的方向?qū)?shù)為

3、曲面22zxy=+與平面240xyz+-=平行的切平面方程為

4、

22

22222

(,)(0,0)

(1cos())sinlim

()e

xyxyxyxyxy+→-+=+

5、設二元函數(shù)yxxyz3

2

+=,則

=???y

xz

2_______________二、挑選填空題(本題滿分15分,共有5道小題,每道小題3分)。以下每道題有四個答案,其中惟獨一個答案是正確的,請選出合適的答案填在空中,多選無效。

1、旋轉(zhuǎn)曲面1222=--zyx是()

(A).xOz坐標面上的雙曲線繞Ox軸旋轉(zhuǎn)而成;(B).xOy坐標面上的雙曲線繞Oz軸旋轉(zhuǎn)而成;(C).xOy坐標面上的橢圓繞Oz軸旋轉(zhuǎn)而成;(D).xOz坐標面上的橢圓繞Ox軸旋轉(zhuǎn)而成.

2、微分方程23cos2xxxyy+=+''的一個特解應具有形式()其中3212211,,,,,,dddbaba都是待定常數(shù).(A).212211sin)(cos)(xdxbxaxxbxax++++;

(B).322

12211sin)(cos)(dxdxdxbxaxxbxax++++++;(C).322

12211)sincos)((dxdxdxbxabxax+++++;

(D).322111)sin)(cos(dxdxdxxbxax+++++

3、已知直線π

22122

:

-=

+=

-z

yxL與平面42:=-+zyxππ,則()(A).L在π內(nèi);(B).L與π不相交;(C).L與π正交;(D).L與π斜交.4、下列說法正確的是()

(A)兩向量ar與br平行的充要條件是存在唯一的實數(shù)λ,使得baλ=rr

;

(B)二元函數(shù)()yxfz,=的兩個二階偏導數(shù)22xz??,22y

z

??在區(qū)域D內(nèi)延續(xù),則在該

區(qū)域內(nèi)兩個二階混合偏導必相等;

(C)二元函數(shù)()yxfz,=的兩個偏導數(shù)在點()00,yx處延續(xù)是函數(shù)在該點可微的

充分條件;

(D)二元函數(shù)()yxfz,=的兩個偏導數(shù)在點()00,yx處延續(xù)是函數(shù)在該點可微的須要條件.

5、設),2,2(yxyxfz-+=且2Cf∈(即函數(shù)具有延續(xù)的二階延續(xù)偏導數(shù)),則

=???y

xz

2()(A)122211322fff--;(B)12221132fff++;(C)12221152fff++;(D)12221122fff--.

三、計算題(本大題共29分)

1、(本題13分)計算下列微分方程的通解。(1)(6分)221xyyxy+++='

(2)(7分)xxeyyy223=+'-''

2、(本題8分)設utuvzcos2+=,teu=,tvln=,求全導數(shù)dt

dz。

3、(本題8分)求函數(shù)()()yyxeyxfx2,22++=的極值。

四、應用題(本題8分)

1、某工廠生產(chǎn)兩種型號的機床,其產(chǎn)量分離為x臺和y臺,成本函數(shù)為

xyyxyxc-+=222),

((萬元),若市場調(diào)查分析,共需兩種機床8臺,求

如何支配生產(chǎn)使其總成本最少?最小成本為多少?

五、綜合題(本大題共21分)

1、(本題10分)已知直線?????==+011xczbyl:,?????==-0

1

2yczaxl:,求過1l且平行于2

l的平面方程.

2、(本題11分)設函數(shù)(,,)lnln3lnfxyzxyz=++在球面

22225(0,0,0)xyzRxyz++=>>>上求一點,使函數(shù)(,,)fxyz取到最大值.

六、證實題(本題共12分)

1、設函數(shù)??

?

??=xyx

z

Fxuk,

,其中k是常數(shù),函數(shù)F具有延續(xù)的一階偏導數(shù).試證實:zuzyuyxux??+??+????

???=xyx

zFkxk,

其次學期高等數(shù)學期中考試試卷答案

一、填空題(本題滿分15分,共有5道小題,每道小題3分)

1.、()()()211132

22=-+++-zyx

2、12

3、2450xyz+--=.

4、0

5、232xy+;

二、挑選填空題(本題滿分15分,共有5道小題,每道小題3分)1(A)2(B)3(C)4(C)5(A)

三、計算題(本大題共29分)

1、(1)解:將原微分方程舉行分別變量,得:

xxyy

d)1(1d2

+=+上式兩端積分得cxxxxyyy++=+==+??2)d1(arctan1d2

2

即:cxxy++=2

arctan2

其中c為隨意常數(shù).(2)解:題設方程對應的齊次方程的特征方程為,0232=+-rr特征根為,11=r

,22=r于是,該齊次方程的通解為,221xeCxCY+=因2=λ是特征方程的單

根,故可設題設方程的特解:.)(210*xebxbxy+=代入題設方程,得

,22022xbbxb=++比較等式兩端同次冪的系數(shù),得,2

1

0=b,11-=b

于是,求得題沒方程的一個特解*y.)12

1(2xexx-=

從而,所求題設方程的通解為.)12

1(2221xxxexxeCeCy-++=2、解:

()

utvutuvu

uzsincos22-=+??=??,

()

uvutuvvvz2cos2=+??=??,ut

zcos=??依復合函數(shù)求導法則,全導數(shù)為

dt

dttzdtdvvzdtduuzdtdz???+???+???=()

1cos1

2sin2?+?+-=utuveutvt

()

t

ttteteteettcosln2

sinln2++-=

3、解:解方程組()()()()?????=+==+++=0

22,01422,22

2yeyxfyyxeyxfx

yxx,得駐點???

??-1,21。因為()()

124,22+++==yyxeyxfAxxx,()()142+==yexyfBxxy,

()xyyeyxfC22,==在點??

???-1,21

處,02>=eA,0=B,eC2=,

224eBAC=-,所以函數(shù)在點???

??-1,21處取得微小值,微小值為

21,21ef-=??

?

??-。

四、應用題(本題8分)1、解:即求成本函數(shù)()yxc,在條件8=+yx下的最小值

構(gòu)造輔助函數(shù)())8(2,

22-++-+=yxxyyxyxFλ

解方程組???

??=-+='=++-='=+-='080402yxFyxFyxFyxλλλ

解得3,5,7==-=yxλ

這唯一的一組解,即為所求,當這兩種型號的機床分離生產(chǎn)5臺和3臺時,總成本最小,最小成本為:2835325)3,5(22=?-?+=c(萬)五、綜合題(本大題共21分)

1、解:直線1l與2l的方向向量分離為{}????

??-=???????=bccb1100011101,,,,,,sρ,

{}?

??

???=???????-=ac

ca101

0101012,

,,,,,sρ,作??????--=?=221111cbcca

,,ssnρρρ,

取直線1l上的一點()cP,,001,則過點1P且以???

???--=2111cbcca

,,nρ為法向量的平面01=+--c

z

byax,

就是過1l且平行于2l的平面方程.

2、解:設球面上點為(,,)xyz.

令2222(,,,)lnln3ln(5)LxyzxyzxyzRλλ=+++++-,

2222111

20,20,20,503xyzLxLyLzLxyzRxyz

λλλλ=

+==+==+==++-=

由前三個式子得2

2

2

3

zxy==,代入最后式子得,xyRz===.由題意得

(,,)fxyz在球面上的最大值一定存在,因此唯一的穩(wěn)定點(,)RR就是最大

值點,最大值為5(,))fRR=.六、證實題(本題共12分)1、證實:

??

???-?????'+?????-?????'+?????=??-22211,,,xyxyxzFxxzxyx

zFxxyxzFkxxuk

k

k??

???'-?????'-?????=xyx

zFyxxyx

zFzxxyx

zFkxkkk,,,

22

12

1

???

??'=??????'=??-xyxzFxxxyxz

Fxyukk,1,21

2

??

?

??'=??????'=??-xyx

zFxxxyx

zFxzukk,1,11

1所以,z

uzyuyxux

??+??+????

???

??????'-?????'

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論