




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
函數(shù)的圖象數(shù)學(xué)教案教學(xué)目標(biāo)
【學(xué)問與技能】
使學(xué)生會用描點法畫出函數(shù)y=ax2的圖象,理解并把握拋物線的有關(guān)概念及其性質(zhì).
【過程與方法】
使學(xué)生經(jīng)受探究二次函數(shù)y=ax2的圖象及性質(zhì)的過程,獲得利用圖象討論函數(shù)性質(zhì)的閱歷,培育學(xué)生分析、解決問題的力量.
【情感、態(tài)度與價值觀】
使學(xué)生經(jīng)受探究二次函數(shù)y=ax2的圖象和性質(zhì)的過程,培育學(xué)生觀看、思索、歸納的良好思維品質(zhì).
重點難點
【重點】
使學(xué)生理解拋物線的有關(guān)概念及性質(zhì),會用描點法畫出二次函數(shù)y=ax2的圖象.
【難點】
用描點法畫出二次函數(shù)y=ax2的圖象以及探究二次函數(shù)的性質(zhì).
教學(xué)過程
一、問題引入
1.一次函數(shù)的圖象是什么?反比例函數(shù)的圖象是什么?
(一次函數(shù)的圖象是一條直線,反比例函數(shù)的圖象是雙曲線.)
2.畫函數(shù)圖象的一般步驟是什么?
一般步驟:(1)列表(取幾組x,y的對應(yīng)值);(2)描點(依據(jù)表中x,y的數(shù)值在坐標(biāo)平面中描點(x,y));(3)連線(用平滑曲線).
3.二次函數(shù)的圖象是什么外形?二次函數(shù)有哪些性質(zhì)?
(運(yùn)用描點法作二次函數(shù)的圖象,然后觀看、分析并歸納得到二次函數(shù)的性質(zhì).)
二、新課教授
【例1】畫出二次函數(shù)y=x2的圖象.
解:(1)列表中自變量x可以是任意實數(shù),列表表示幾組對應(yīng)值.
(2)描點:依據(jù)上表中x,y的數(shù)值在平面直角坐標(biāo)系中描點(x,y).
(3)連線:用平滑的曲線順次連接各點,得到函數(shù)y=x2的圖象,如下圖.
思索:觀看二次函數(shù)y=x2的圖象,思索以下問題:
(1)二次函數(shù)y=x2的圖象是什么外形?
(2)圖象是軸對稱圖形嗎?假如是,它的對稱軸是什么?
(3)圖象有最低點嗎?假如有,最低點的坐標(biāo)是什么?
師生活動:
教師引導(dǎo)學(xué)生在平面直角坐標(biāo)系中畫出二次函數(shù)y=x2的圖象,通過數(shù)形結(jié)合解決上面的3個問題.
學(xué)生動手畫圖,觀看、爭論并歸納,積極展現(xiàn)探究結(jié)果,教師評價.
函數(shù)y=x2的圖象是一條關(guān)于y軸(x=0)對稱的曲線,這條曲線叫做拋物線.實際上二次函數(shù)的圖象都是拋物線.二次函數(shù)y=x2的圖象可以簡稱為拋物線y=x2.
由圖象可以看出,拋物線y=x2開口向上;y軸是拋物線y=x2的對稱軸:拋物線y=x2與它的對稱軸的交點(0,0)叫做拋物線的頂點,它是拋物線y=x2的最低點.實際上每條拋物線都有對稱軸,拋物線與對稱軸的交點叫做拋物線的頂點,頂點是拋物線的最低點或最高點.
【例2】在同始終角坐標(biāo)系中,畫出函數(shù)y=x2及y=2x2的圖象.
解:分別填表,再畫出它們的圖象.
思索:函數(shù)y=x2、y=2x2的圖象與函數(shù)y=x2的圖象有什么共同點和不同點?
師生活動:
教師引導(dǎo)學(xué)生在平面直角坐標(biāo)系中畫出二次函數(shù)y=x2、y=2x2的圖象.
學(xué)生動手畫圖,觀看、爭論并歸納,答復(fù)探究的思路和結(jié)果,教師評價.
拋物線y=x2、y=2x2與拋物線y=x2的開口均向上,頂點坐標(biāo)都是(0,0),函數(shù)y=2x2的圖象的開口較窄,y=x2的圖象的開口較大.
探究1:畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,并考慮這些圖象有什么共同點和不同點。
師生活動:
學(xué)生在平面直角坐標(biāo)系中畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,觀看、爭論并歸納.教師巡察學(xué)生的探究狀況,若發(fā)覺問題,準(zhǔn)時點撥.
學(xué)生匯報探究的思路和結(jié)果,教師評價,給出圖形.
拋物線y=-x2、y=-x2、y=-2x2開口均向下,頂點坐標(biāo)都是(0,0),函數(shù)y=-2x2的圖象開口最窄,y=-x2的圖象開口最大.
探究2:比照拋物線y=x2和y=-x2,它們關(guān)于x軸對稱嗎?拋物線y=ax2和y=-ax2呢?
師生活動:
學(xué)生在平面直角坐標(biāo)系中畫出函數(shù)y=x2和y=-x2的圖象,觀看、爭論并歸納.
教師巡察學(xué)生的探究狀況,發(fā)覺問題,準(zhǔn)時點撥.
學(xué)生匯報探究思路和結(jié)果,教師評價,給出圖形.
拋物線y=x2、y=-x2的圖象關(guān)于x軸對稱.一般地,拋物線y=ax2和y=-ax2的圖象也關(guān)于x軸對稱.
教師引導(dǎo)學(xué)生小結(jié)(學(xué)問點、規(guī)律和方法).
一般地,拋物線y=ax2的對稱軸是y軸,頂點是原點.當(dāng)a0時,拋物線y=ax2的開口向上,頂點是拋物線的最低點,當(dāng)a越大時,拋物線的開口越小;當(dāng)a0時,拋物線y=ax2的開口向下,頂點是拋物線的最高點,當(dāng)a越大時,拋物線的開口越大.
從二次函數(shù)y=ax2的圖象可以看出:假如a0,當(dāng)x0時,y隨x的增大而減小,當(dāng)x0時,y隨x的增大而增大;假如a0,當(dāng)x0時,y隨x的增大而增大,當(dāng)x0時,y隨x的增大而減小.
三、穩(wěn)固練習(xí)
1.拋物線y=-4x2-4的開口向,頂點坐標(biāo)是,對稱軸是,當(dāng)x=時,y有最值,是.
【答案】下(0,-4)x=00大-4
2.當(dāng)m≠時,y=(m-1)x2-3m是關(guān)于x的二次函數(shù).
【答案】1
3.已知拋物線y=-3x2上兩點A(x,-27),B(2,y),則x=,y=.
【答案】-3或3-12
4.拋物線y=3x2與直線y=kx+3的交點坐標(biāo)為(2,b),則k=,b=.
【答案】12
5.已知拋物線的頂點在原點,對稱軸為y軸,且經(jīng)過點(-1,-2),則拋物線的表達(dá)式為.
【答案】y=-2x2
6.在同一坐標(biāo)系中,圖象與y=2x2的圖象關(guān)于x軸對稱的是()
A.y=x2B.y=x2
C.y=-2x2D.y=-x2
【答案】C
7.拋物線y=4x2、y=-2x2、y=x2的圖象,開口最大的是()
A.y=x2B.y=4x2
C.y=-2x2D.無法確定
【答案】A
8.對于拋物線y=x2和y=-x2在同一坐標(biāo)系中的位置,以下說法錯誤的選項是()
A.兩條拋物線關(guān)于x軸對稱
B.兩條拋物線關(guān)于原點對稱
C.兩條拋物線關(guān)于y軸對稱
D.兩條拋物線的交點為原點
【答案】C
四、課堂小結(jié)
1.二次函數(shù)y=ax2的圖象過原點且關(guān)于y軸對稱,自變量x的取值范圍是一切實數(shù).
2.二次函數(shù)y=ax2的性質(zhì):拋物線y=ax2的對稱軸是y軸,頂點是原點.當(dāng)a0時,拋物線y=x2開口向上,頂點是拋物線的最低點,當(dāng)a越大時,拋物線的開口越小;當(dāng)a0時,拋物線y=ax2開口向下,頂點是拋物線的最高點,當(dāng)a越大時,拋物線的開口越大.
3.二次函數(shù)y=ax2的圖象可以通過列表、描點、連線三個步驟畫出來.
教學(xué)反思
本節(jié)課的內(nèi)容主要討論二次函數(shù)y=ax2在a取不同值時的圖象,并引出拋物線的有關(guān)概念,再依據(jù)圖象總結(jié)拋物線的有關(guān)性質(zhì).整個內(nèi)容分成:(1)例1是根底;(2)在例1的根底之上引入例2,讓學(xué)生體會a的大小對拋物線開口寬敞程度的影響;(3)例2及后面的練習(xí)探究讓學(xué)生領(lǐng)悟a的正負(fù)對拋物線開口方向的影響;(4)最終讓學(xué)生比擬例1和例2,練習(xí)歸納總結(jié).
函數(shù)的圖象數(shù)學(xué)教案2
一、目的要求
1.使學(xué)生能畫出正比例函數(shù)與一次函數(shù)的圖象。
2.結(jié)合圖象,使學(xué)生理解正比例函數(shù)與一次函數(shù)的性質(zhì)。
3.在學(xué)習(xí)一次函數(shù)的圖象和性質(zhì)的根底上,使學(xué)生進(jìn)一步理解正比例函數(shù)和一次函數(shù)的概念。
二、內(nèi)容分析
1、對函數(shù)的討論,在初中階段,只能是初步的。從方法上,是用初等方法,即傳統(tǒng)的初等數(shù)學(xué)的方法,而不是用極限、導(dǎo)數(shù)等高等數(shù)學(xué)的根本工具,并且,比起高中對函數(shù)的討論,更多地依靠于圖象的直觀,從討論的內(nèi)容上,通常,包括定義域、值域、函數(shù)的變化特征等方面。關(guān)于定義域,只是在開頭學(xué)習(xí)函數(shù)概念時,有一個一般的簡介,在詳細(xì)學(xué)習(xí)幾種數(shù)時,就不一一單獨敘述了,關(guān)于值域,初中暫不涉及,至于函數(shù)的變化特征,像上升、下降、極大、微小,以及奇、偶性、周期性,連續(xù)性等,初中只就一次函數(shù)與反比例函效的升降問題略作介紹,其它,在初中都不做為根本教學(xué)要求。
2、關(guān)于一次函數(shù)圖象是直線的問題,在前面學(xué)習(xí)13.3節(jié)時,利用幾何學(xué)過的角平分線的性質(zhì),對函數(shù)y=x的圖象是一條直線做了一些說明,至于其它種類的一次函數(shù),則只是在描點畫圖時,從直觀上看出,它們的圖象也都是一條直線,教科書沒有對這個結(jié)論進(jìn)展嚴(yán)格的論證,對于學(xué)生,只要求他們能結(jié)合y=x的圖象以及其它一些一次函數(shù)圖象的實例,對這個結(jié)論有一個直觀的熟悉就可以了。
三、教學(xué)過程
復(fù)習(xí)提問:
1.什么是一次函數(shù)?什么是正比例函數(shù)?
2.在同始終角坐標(biāo)系中描點畫出以下三個函數(shù)的圖象:
y=2xy=2x—1y=2x+1
新課講解:
1.我們畫過函數(shù)y=x的圖象,并且知道,函數(shù)y=x的圖象上的點的坐標(biāo)滿意橫坐標(biāo)與縱坐標(biāo)相等的條件,由幾何上學(xué)過的角平分線的性質(zhì),可以推斷,函數(shù)y=x,這是一個一次函數(shù)(也是正比例函數(shù)),它的圖象是一條直線。
再看復(fù)習(xí)提問的第2題,所畫出的三個一次函數(shù)的圖象,從直觀上看,也分別是一條直線。
一般地,一次函數(shù)的圖象是一條直線。
前面我們在畫一次函數(shù)的圖象時,采納先列表、描點,再連續(xù)的方法.現(xiàn)在,我們明確了一次函數(shù)的圖象都是一條直線。因此,在畫一次函數(shù)的圖象時,只要在坐標(biāo)平面內(nèi)描出兩個點,就可以畫出它的圖象了。
先看兩個正比例項數(shù),
y=0。5x
與y=—0。5x
由這兩個正比例函數(shù)的解析式不難看出,當(dāng)x=0時,
y=0
即函數(shù)圖象經(jīng)過原點.(讓學(xué)生想一想,為什么?)
除了點(0,0)之外,對于函數(shù)y=0。5x,再選一點(1,0。5),對于函數(shù)y=—0。5x。再選一點(1,一0。5),就可以分別畫出這兩個正比例函數(shù)的圖象了。
實際畫正比例函數(shù)y=kx(k≠0)的圖象,一般按以以下三步:
(1)先選取兩點,通常選點(0,0)與點(1,k);
(2)在坐標(biāo)平面內(nèi)描出點(0,O)與點(1,k);
(3)過點(0,0)與點(1,k)做一條直線.
這條直線就是正比例函數(shù)y=kx(k≠0)的圖象.
觀看正比例函數(shù)y=0。5x的圖象.
這里,k=0.5>0.
從圖象上看,y隨x的增大而增大.
再觀看正比例函數(shù)y=—0.5x的圖象。
這里,k=一0.5<0
從圖象上看,y隨x的增大而減小
實際上,我們還可以從解析式本身的特點動身,考慮正比例函數(shù)的性質(zhì)。
先看
y=0。5x
任取兩對對應(yīng)值。(x1,y1)與(x2,y2),
假如x1>x2,由k=0。5>0,得
0。5x1>0。5x2
即yl>y2
這就是說,當(dāng)x增大時,y也增大。
類似地,可以說明的y=—0.5x性質(zhì)。
從解析式本身特點動身分析正比例函數(shù)性質(zhì),可視學(xué)生程度考慮是否向?qū)W生介紹。
一般地,正比例函數(shù)y=kx(k≠0)有以下性質(zhì):
(1)當(dāng)k>0時,y隨x的增大而增大;
(2)當(dāng)k<0時,y隨x的增大而減小。
2、講解教科書13.5節(jié)例1.與畫正比例函數(shù)圖象類似,畫一次函數(shù)圖象的關(guān)鍵是選取適當(dāng)?shù)膬牲c,然后連線即可,為了描點便利,對于一次函數(shù)
y=kx+b(k,b是常數(shù),k≠0)
通常選取
(O,b)與(—,0)
兩點,
對于例l中的一次函效
y=2x+1與y=—2x+1
就分別選取
(O,1)與(一0.5,2),
還有
(0,1)—與(0.5.0).
在例1之后,順便指出,一次函數(shù)y=kx+b的圖象,習(xí)慣上也稱為直線)y=kx+b
結(jié)合例1中的兩個一次函數(shù)的圖象,就可以得到與正比例函數(shù)類似的關(guān)于一次函數(shù)的兩條性質(zhì)。
對于一次函數(shù)的性質(zhì),也可以從一次函數(shù)的解析式分析得出,這與正比例函數(shù)差不多。
課堂練習(xí):
教科書13.5節(jié)第一個練習(xí)第l—2題,在做這兩道練習(xí)時,可結(jié)合實例進(jìn)一步說明正比例函數(shù)與一次函數(shù)的有關(guān)性質(zhì)。
課堂小結(jié):
1.正比例函數(shù)y=kx圖象的畫法:過原點與點(1,k)的直線即所求圖象.
2。一次函數(shù)y=kx+b圖象的畫法:在y軸上取點(0,6),在x軸上取點(,0),過這兩點的直線即所求圖象。
3.正比例函數(shù)y=kx與一次函數(shù)y=kx+b的性質(zhì)(由學(xué)生自行歸納).
四、課外作業(yè)
1.教科書習(xí)題13.5A組第l一3題.
2.選作教科書習(xí)題13.5B組第1題.
函數(shù)的圖象數(shù)學(xué)教案3
教學(xué)目標(biāo)
(一)知道函數(shù)圖象的意義;
(二)能畫出簡潔函數(shù)的圖象,會列表、描點、連線;
(三)能從圖象上由自變量的值求出對應(yīng)的函數(shù)的近似值。
教學(xué)重點和難點
重點:熟悉函數(shù)圖象的意義,會對簡潔的函數(shù)列表、描點、連線畫出函數(shù)圖象。
難點:對已恬圖象能讀圖、識圖,從圖象解釋函數(shù)變化關(guān)系。
教學(xué)過程設(shè)計
(一)復(fù)習(xí)
1、什么叫函數(shù)?
2、什么叫平面直角坐標(biāo)系?
3、在坐標(biāo)平面內(nèi),什么叫點的橫坐標(biāo)?什么叫點的縱坐標(biāo)?
4、假如點A的橫坐標(biāo)為3,縱坐標(biāo)為5,請用記號表示A(3,5)。
5、請在坐標(biāo)平面內(nèi)畫出A點。
6、假如已知一個點的坐標(biāo),可在坐標(biāo)平面內(nèi)畫出幾個點?反過來,假如坐標(biāo)平面內(nèi)的一個點確定,這個點的坐標(biāo)有幾個?這樣的點和坐標(biāo)的對應(yīng)關(guān)系,叫做什么對應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對一一對應(yīng))
(二)新課
我們在前幾節(jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時,y是x的函數(shù)。
這個函數(shù)關(guān)系中,y與x的函數(shù)。
這個函數(shù)關(guān)系中,y與x的對應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫出圖象的方法來表示。
詳細(xì)做法是
第一步:列表。(寫出自變量x與函數(shù)值的對應(yīng)表)先確定x的若干個值,然后填入相應(yīng)的y值。
函數(shù)式y(tǒng)=2x+1(這種用表格表示函數(shù)關(guān)系的方法叫做列表法)
其次步:描點,對于表中的每一組對應(yīng)值,以x值作為點的橫坐標(biāo),以對應(yīng)的y值作為點的縱坐標(biāo),便可畫出一個點。也就是由表中給出的有序?qū)崝?shù)對,在直角坐標(biāo)系中描出相應(yīng)的點。
第三步連線,根據(jù)橫坐標(biāo)由小到大的挨次把相鄰兩點用線段連結(jié)起來,得到的圖形就是函數(shù)式y(tǒng)=2x+1的圖象。圖13—24例1在同始終角坐標(biāo)系中畫出以下函數(shù)式的圖象:
(1)y=—3x;(2)y=—3x+2;(3)y=—3x—3
(1)在直角坐標(biāo)系中以月份數(shù)作為點的橫坐標(biāo),以該月的產(chǎn)值作為點的縱坐標(biāo)畫郵對應(yīng)的點。把12個點畫在同始終角坐標(biāo)系中。
(2)根據(jù)月份由小到大的挨次,把每兩個點用線段連接起來。
(3)解讀圖象:從圖說出幾月到幾月產(chǎn)量是上升的、下降的或不升不降的。
(4)假如從3月到6月的產(chǎn)量是持逐平穩(wěn)增長的,請在圖上查詢4月15日的產(chǎn)量大約是多少噸?
解:(1),(2)見圖13—26(3)產(chǎn)量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。
產(chǎn)量下降:8月到9月,9月到10月。
產(chǎn)量不升不降:2月到3月;6月到7月,7月到8月。
(4)過x軸上的4.5處作y軸的平行線,與圖象交于點A,則點A的縱坐標(biāo)約4.5,所以4月15日的產(chǎn)量約為4.5噸。
(三)課堂練習(xí)
已知函數(shù)式y(tǒng)=—2x。用列表(x取—2,—1,2,1,2),描點,連線的程序,畫出它的圖象。
(四)小結(jié)
到現(xiàn)在,我們已經(jīng)學(xué)過了表示函數(shù)關(guān)系的方法有三種:
1、解析式法——用數(shù)學(xué)式子表示函數(shù)的關(guān)系。
2、列表法——通過列表給出函數(shù)y與自變量x的對應(yīng)關(guān)系。
3、圖象法——把自變量x作為點的橫坐標(biāo),對應(yīng)的函數(shù)值y作為點的縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出對應(yīng)的點,全部這些點的集合,叫做這個函數(shù)的圖象。用圖象來表示函數(shù)y與自變量x對應(yīng)關(guān)系。
這三種表示函數(shù)的方法各有優(yōu)缺點。
1、用解析法表示函數(shù)關(guān)系
優(yōu)點:簡潔明白。能從解析式清晰看到兩個變量之間的全部相依關(guān)系,并且適合進(jìn)展理論分析和推導(dǎo)計算。
缺點:在求對應(yīng)值時,有時要做較簡單的計算。
2、用列表表示函數(shù)關(guān)系
優(yōu)點:對于表中自變量的每一個值,可以不通過計算,直接把函數(shù)值找到,查詢時很便利。
缺點:表中不能把全部的自變量與函數(shù)對應(yīng)值全部列出,而且從表中看不出變量間的對應(yīng)規(guī)律。
3、用圖象法表示函數(shù)關(guān)系
優(yōu)點:形象直觀,可以形象地反映出函數(shù)關(guān)系變化的趨勢和某些性質(zhì),把抽象的函數(shù)概念形象化。
缺點:從自變量的值經(jīng)常難以找到對應(yīng)的函數(shù)的精確值。
函數(shù)的三種根本表示方法,各有各的優(yōu)點和缺點,因此,要依據(jù)不同問題與需要,敏捷地采納不同的方法。在數(shù)學(xué)或其他科學(xué)討論與應(yīng)用上,有時把這三種方法結(jié)合起來使用,即由已知的函數(shù)解析式,列出自變量與對應(yīng)的函數(shù)值的表格,再畫出它的圖象。
(五)作業(yè)
1、在圖13—27中,不能表示函數(shù)關(guān)系的圖形有()
(A)(a),(b),(c)(B)(b),(c),(d)(C)(b),(c),(e)(D)(b),(d),(e)
2、函數(shù)y=的圖象是圖13—28中的()
3、矩形的周長是12cm,設(shè)矩形的寬為x(cm),面積為y(cm2)。
(1)以x為自變量,y為x的函數(shù),寫出函數(shù)關(guān)系式,并在關(guān)系式后面注明x的取值范圍;
(2)列表、描點、連線畫出此函數(shù)的圖象
4、(1)畫出函數(shù)y=—x+2的圖象(在—4與4之間,每隔1取一個x值,列表;并在直角坐標(biāo)系中描點畫圖);
(2)推斷以下各有序?qū)崝?shù)對是不是函數(shù)。Y=—x+2的自變量x與函數(shù)y的一對對應(yīng)值,假如是,檢驗一下具有相應(yīng)坐標(biāo)的點是否在你所出的函數(shù)圖象上:(—2,2),(—,2),(—1,3),(,1)
5、畫出以下函數(shù)的圖象:
(1)y=4x—1;(2)y=4x+1
6、圖13—29是北京春季某一天的氣溫隨時間變化的圖象。依據(jù)圖象答復(fù),在這一天:
(1)8時,12時,20時的氣溫各是多少;
(2)最高氣溫與最低氣溫各是多少;
(3)什么時間氣溫最高,什么時間氣溫最低。
7、畫出函斷y=x2的圖象(先填下表,再描點,然后用平滑曲線順次連結(jié)各點):
8、畫出函數(shù)y=圖象(先填下表,再描點,然后用平滑曲線順次連結(jié)各點):
9、作業(yè)的.答案或提示
(1)選(C),由于對應(yīng)于x的一個值的y值不是唯一的。
10、選(D)當(dāng)x0時,=x,所以y===1
(1)y=x(6—x)其中00時,x的取值范圍如何?
(2)y=0時,x取什么值?
(1)y<0時,x的取值范圍如何?
小結(jié):數(shù)與形是數(shù)學(xué)中相互依賴的兩個方面.圖形比較直觀,可以啟發(fā)思路;而數(shù)學(xué)的嚴(yán)格證明也是必不可少的.直觀性和形式化是數(shù)學(xué)的兩重性.
探究活動
探究問題:
欣欣日用品零售商店,從某公司批發(fā)部每月按銷售合同以批發(fā)單價每把8元購進(jìn)雨傘(數(shù)量至少為100把),欣欣商店根據(jù)銷售記錄,這批雨傘以零售單價每把為14元出售時,月銷售量為100把,數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c的圖象,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c的圖象》。如果零售單價每降價0.1元,月銷售量就要增加5把.
(1)欣欣日用品零售商店以零售單價14元出售時,一個月的利潤為多少元?
(2)欣欣日用品零售商店為了擴(kuò)大銷售記錄,現(xiàn)實行降價銷售,問分別降價0.2元、0.8元、1.2元、1.6元、2.4元、3元時的利潤是多少?
(3)欣欣日用品零售商店實行降價銷售后,問降價多少元時利潤最大?最大利潤為多少元?
(4)現(xiàn)在該公司的批發(fā)部為了再次擴(kuò)大這種雨傘的銷售量,給零售商制定如下優(yōu)惠措施:如果零售商每月從批發(fā)部購進(jìn)雨傘的數(shù)量超過100把,其超過100把的部分每把按原價九五折(即百分之95)付費,但零售價每把不能低于10元。欣欣日用品零售商店應(yīng)將這種雨傘的零售單價定為每把多少元出售時,才能使這種雨傘的月銷售利潤最大?最大月銷售利潤是多少元?(銷售利潤=銷售款額—進(jìn)貨款額)
解:(1)(14—8)(元)
(2)638元、728元、748元、792元、792元、750元。
(3)設(shè)降價元時利潤最大,最大利潤為元
=
=
=
∴當(dāng)時,有最大值
元
(4)設(shè)降價元時利潤最大,利潤為元
(其中)。
化簡,得。
,
∴當(dāng)時,有最大值。
∴。
數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c的圖象
函數(shù)的圖象數(shù)學(xué)教案5
教材分析
在函數(shù)教學(xué)中,我們不僅要在教會函數(shù)知識上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊(yùn)含的思想方法,要從數(shù)學(xué)思想方法的高度進(jìn)行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
1.注重“類比教學(xué)”在函數(shù)教學(xué)中我們期望的是通過對前面知識的學(xué)習(xí)方法的傳授,達(dá)到對后續(xù)知識的學(xué)習(xí)產(chǎn)生影響,使學(xué)生達(dá)到舉一反三,觸類旁通的目的,讓學(xué)生順利地由“學(xué)會”到“會學(xué)”,真正實現(xiàn)“教是為了不教”的目的.
2.注重“數(shù)學(xué)結(jié)合”的教學(xué)
數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長。
(1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。
(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
(3)注意讓學(xué)生體會研究具體函數(shù)圖象規(guī)律的方法。
知識技能
目標(biāo)
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
過程與方法目標(biāo)
1、通過研究圖象,經(jīng)歷知識的歸納、探究過程;培養(yǎng)學(xué)生觀察、比較、概括、推理的能力;
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度目標(biāo)
1、通過畫函數(shù)圖象并借助圖象研究函數(shù)的性質(zhì),體驗數(shù)與形的內(nèi)在聯(lián)系,感受函數(shù)圖象的簡潔美;
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
教學(xué)重點
一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
函數(shù)的圖象數(shù)學(xué)教案6
一、教學(xué)目的
1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學(xué)生會用描點法畫出簡單函數(shù)的圖象.
二、教學(xué)重點、難點
重點:
1.理解與認(rèn)識函數(shù)圖象的意義.
2.培養(yǎng)學(xué)生的看圖、識圖能力.
難點:
在畫圖的三個步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對應(yīng)值問題.
三、教學(xué)過程
1.畫函數(shù)圖象的方法是描點法.其步驟:
(1)列表.要注意適當(dāng)選取自變量與函數(shù)的對應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對應(yīng)值列出表來.
(2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點.
(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標(biāo)系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).
2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0。5的圖象.
小結(jié)
本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.
練習(xí):①選用課本練習(xí)(前一節(jié)已作:列表、描點,本節(jié)要求連線)
②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象.
作業(yè):選用課本習(xí)題.
四、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45286-2025信息技術(shù)手持式移動設(shè)備增強(qiáng)現(xiàn)實系統(tǒng)技術(shù)規(guī)范
- 2025年萊蕪下載貨運(yùn)從業(yè)資格證模擬考試系統(tǒng)試題
- 單位空調(diào)安裝合同范本
- 刑法中勞務(wù)合同范本
- 刊物設(shè)計制作合同范本
- 寫好運(yùn)輸合同范本
- 農(nóng)戶貸款合伙經(jīng)營合同范本
- 企業(yè)重組收購合同范本
- 供熱設(shè)備買賣合同范本
- 代理銀行開戶合同范本
- 固定財產(chǎn)清查登記匯總表
- DB12-T 1153-2022城市軌道交通運(yùn)營設(shè)備設(shè)施大修和更新改造技術(shù)規(guī)范
- 《英語閱讀4》課程教案(下)
- 金壇區(qū)蘇科版二年級心理健康教育第1課《我喜歡我自己》課件(定稿)
- ava標(biāo)準(zhǔn)錄播教室應(yīng)用解決方案
- 粗粒土和巨粒土最大干密度試驗檢測記錄表
- 青島版五四制三年級下冊數(shù)學(xué)課件 小數(shù)的認(rèn)識
- 土木工程專業(yè)畢業(yè)論文任務(wù)書 土木工程專業(yè)電大畢業(yè)論文
- 英語閱讀Reading 特洛伊木馬屠城 課件
- 倪師十二經(jīng)穴起止歌經(jīng)絡(luò)歌訣
- 電力電子技術(shù)全套課件
評論
0/150
提交評論