吉林省白城市洮北區(qū)第一中學(xué)2023屆高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
吉林省白城市洮北區(qū)第一中學(xué)2023屆高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
吉林省白城市洮北區(qū)第一中學(xué)2023屆高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
吉林省白城市洮北區(qū)第一中學(xué)2023屆高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
吉林省白城市洮北區(qū)第一中學(xué)2023屆高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下圖是民航部門統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價(jià)格最高B.天津的往返機(jī)票平均價(jià)格變化最大C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加2.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”意思為有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.4.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.25.正項(xiàng)等比數(shù)列中,,且與的等差中項(xiàng)為4,則的公比是()A.1 B.2 C. D.6.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.7.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.8.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.9.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.10.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.1911.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要12.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在中,若,則的范圍為________.14.已知雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線的焦距為______.15.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為__________.16.對于任意的正數(shù),不等式恒成立,則的最大值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.18.(12分)健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:現(xiàn)隨機(jī)抽取了100為會員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計(jì)1位會員至少消費(fèi)兩次的概率(2)某會員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;(3)假設(shè)每個(gè)會員每星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機(jī)抽取兩位,記從這兩位會員的消費(fèi)獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望19.(12分)在直角坐標(biāo)系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)直線l的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段的長.20.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.21.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點(diǎn)M(2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.22.(10分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對選項(xiàng)逐一分析,由此得出敘述不正確的選項(xiàng).【詳解】對于A選項(xiàng),根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價(jià)格最高,所以A選項(xiàng)敘述正確.對于B選項(xiàng),根據(jù)折線圖可知天津的往返機(jī)票平均價(jià)格變化最大,所以B選項(xiàng)敘述正確.對于C選項(xiàng),根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng),所以C選項(xiàng)敘述正確.對于D選項(xiàng),根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個(gè)城市的往返機(jī)票平均價(jià)格在增加,故D選項(xiàng)敘述錯(cuò)誤.故選:D【點(diǎn)睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.2、B【解析】

人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計(jì)算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.3、B【解析】

首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.4、B【解析】

化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.5、D【解析】

設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項(xiàng)公式,以及等差數(shù)列的中項(xiàng)性質(zhì),解方程可得公比q.【詳解】由題意,正項(xiàng)等比數(shù)列中,,可得,即,與的等差中項(xiàng)為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列通項(xiàng)公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.6、C【解析】

由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡單題.7、B【解析】

由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問題,屬于中檔題.8、B【解析】

分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點(diǎn)睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.9、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學(xué)史了解,屬于基礎(chǔ)題.10、B【解析】

由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時(shí),a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時(shí),要使得a1則ak+1則k=17,故選:B.【點(diǎn)睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.11、B【解析】

根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.12、C【解析】

根據(jù)等比數(shù)列的前項(xiàng)和公式,判斷出正確選項(xiàng).【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

借助正切的和角公式可求得,即則通過降冪擴(kuò)角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【詳解】,所以,.因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的化簡,重點(diǎn)考查學(xué)生的計(jì)算能力,難度一般.14、1【解析】

由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.15、.【解析】分析:由題意結(jié)合古典概型計(jì)算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點(diǎn)睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時(shí),用列舉法把所有基本事件一一列出時(shí),要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計(jì)數(shù)原理的正確使用.16、【解析】

根據(jù)均為正數(shù),等價(jià)于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價(jià)于恒成立,令則,當(dāng)且僅當(dāng)即時(shí)取得等號,故的最大值為.故答案為:【點(diǎn)睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進(jìn)行等價(jià)變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)因?yàn)?,所以,由余弦定理得,化簡得,可得,解得,又因?yàn)椋?(6分)(2)因?yàn)?,所以,則(當(dāng)且僅當(dāng)時(shí),取等號).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號),解得.所以(當(dāng)且僅當(dāng)時(shí),取等號),所以的周長的最小值為.18、(1)(2)22.5(3)見解析,【解析】

(1)根據(jù)頻數(shù)計(jì)算頻率,得出概率;(2)根據(jù)優(yōu)惠標(biāo)準(zhǔn)計(jì)算平均利潤;(3)求出各種情況對應(yīng)的的值和概率,得出分布列,從而計(jì)算出數(shù)學(xué)期望.【詳解】解:(1)估計(jì)1位會員至少消費(fèi)兩次的概率;(2)第1次消費(fèi)利潤;第2次消費(fèi)利潤;第3次消費(fèi)利潤;第4次消費(fèi)利潤;這4次消費(fèi)獲得的平均利潤:(3)1次消費(fèi)利潤是27,概率是;2次消費(fèi)利潤是,概率是;3次消費(fèi)利潤是,概率是;4次消費(fèi)利潤是,概率是;由題意:故分布列為:0期望為:【點(diǎn)睛】本題考查概率、平均利潤、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查古典概型、相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題.19、(1);(2)2【解析】

(1)首先利用對圓C的參數(shù)方程(φ為參數(shù))進(jìn)行消參數(shù)運(yùn)算,化為普通方程,再根據(jù)普通方程化極坐標(biāo)方程的公式得到圓C的極坐標(biāo)方程.(2)設(shè),聯(lián)立直線與圓的極坐標(biāo)方程,解得;設(shè),聯(lián)立直線與直線的極坐標(biāo)方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標(biāo)方程為.(2)設(shè),則由解得,,得;設(shè),則由解得,,得;所以【點(diǎn)睛】本題考查圓的參數(shù)方程與普通方程的互化,考查圓的極坐標(biāo)方程,考查極坐標(biāo)方程的求解運(yùn)算,考查了學(xué)生的計(jì)算能力以及轉(zhuǎn)化能力,屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)求出公差,從而求出,再利用等比數(shù)列的前項(xiàng)和公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點(diǎn)睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論