DNV-2050年海運(yùn)預(yù)測(英)-2022-84正式版_第1頁
DNV-2050年海運(yùn)預(yù)測(英)-2022-84正式版_第2頁
DNV-2050年海運(yùn)預(yù)測(英)-2022-84正式版_第3頁
DNV-2050年海運(yùn)預(yù)測(英)-2022-84正式版_第4頁
DNV-2050年海運(yùn)預(yù)測(英)-2022-84正式版_第5頁
已閱讀5頁,還剩79頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

MARITIMEFORECASTTO2050EnergyTransitionOutlook2022DNVMaritimeForecastto2050FOREWORDLetmestartwiththepositivenews:newbuildordersandrecentindustryprojectsprovethatthemaritimeenergytransitionisaccelerating.Thenecessarypracticalconsiderationsaretakingshape,andship-ownershavestartedtofuture-prooftheirassets.ApplyingourCarbon-RiskFramework,launchedbackin2020,hasalsocontributedtorobust,cost-ef?cientshipdesigns.sustainablesharesinthe2050fuelmix–beitbiofuels,e-fuels,orfossilfuelswithcarboncaptureandstorage–reliesonsoundglobalindustrydecisionsandcollabo-ration.Themaritimeindustrymustcontinuallyseekconsensuswithotherindustriestoensurethatsustain-ableenergyresourcesaredirectedtowheretheycanreducegreenhousegasemissionsmost.Encouragingly,newbuildvesselsareincreasinglybeingorderedreadytorunonalternativefuels,withLNGdominantfornow.Substantialinvestmentisgoingintoresearchingsafeandeconomicallyfeasiblealternativecarbon-neutralfuelsandintodevelopingfueltechnolo-gies.Butthiswillcountforlittleiftheindustryanditsstakeholdersdonotcollaboratetoovercometheultimatehurdle,fuelavailability.Alreadyby2030,5%oftheenergyforshippingshouldcomefromcarbon-neutralfuels,requiringhugeinvestmentsinonboardtechnologiesandonshoreinfrastructure.Navigatingtheoptionsiscomplex,notleastbecausethereisnosingle‘winner-takes-all’alternativefuelandtechnology.Ourupdatedmodel-Our6thMaritimeForecastto2050reportzeroesinonthiskeyissueandoutlinesunderwhatconditionseachnewfueltypewillproliferate.Whichofthemcapture2Forewordlingpointstoadiversefutureenergymixofcarbon-neutralandfossilfuels,withthelattergraduallyphasedoutby2050.Ifwepushtowardsfulldecarbonizationby2050,thefuelinfrastructureneedstodeliveraround270milliontonnesofalternativefuelsaccordingtoourmodellings.Amammothchallenge.However,Iamconvincedthat,togetherwecanbuildabetter,greenermaritimefuture.Weshoulduseallavailableoptionstoprogresstowardsandreachnetzero.Our?ndingsreinforcetheneedforstrongalliancestopushthedevelopmentofsupplychainsthatcanensurefuelavailability.TheentireIhopethatyouenjoyreadingthereportand?ndvalueinitsresearch?ndingsfordecision-makingandstrate-gizing.maritimevaluechain–charterers,energymajors,fuelsuppliers,governments,?nanciers,ports,andshipown-ers–shouldcollaboratetoensureadequatefundingandapplyittotherightprojects.Greenshippingcorridorscanserveaslaunchpads,alsoreducingtheriskofportinfrastructurebecomingobsoleteasthefuelmixshifts.Enroutetodecarbonizationtargets,employingthefullpowerofdigitaltoolsformoreenergy-ef?cientvesselscandeliverupto15%ofGHGemissionsavingsrequiredby2050.Manysuchtoolsareavailable,andIamcon?dentthatevenmorepromisingoneswillbelaunchedinthecomingdecades.Knut?rbeck-NilssenCEOMaritime,DNV3DNVMaritimeForecastto2050CONTENTSForeword265Pathwaysfordecarbonizationofshipping56ExecutiveSummaryIntroduction5.1UpdatedGHGPathwayModel585.2Exploringdecarbonizationscenarios6012165.3Scenarioresults61Outlookondriversandregulationsfordecarbonization5.4Emissionsreductioncontributionbymeasure20672.1Regulatorydevelopments245.5Fuelfamilies’contributiontothe2050energymix2.2Well-to-wakeGHGemissionsandsustainabilityoffuels67692728305.6Investmentneeds2.3Theneedforstandardstosupportdecision-makingandfunding5.7Exploringtheeffectof?rstmoversandincreasedavailabilityoffuels713OutlookonshiptechnologiesandfuelsAppendix733.1AvailableshiptechnologiesandfuelsfordecarbonizationofshippingA.1RegulatoryinputA.2ProjectiononfuelpricesA.3Energy-ef?ciencymeasuresA.4SpeedreductionA.5Logistics73747676777832343.2Statusoffueltransition3.3Outlookforthereadinessofonboardfueltechnologies353.4Digitalization–enablingthetransition41A.6Tradegrowth4OutlookonalternativefuelproductionandinfrastructureA.7Converteroptions,maturity,andcompatibility4479A.8Newbuildandretro?tfueltechnologyCapex4.1Existingfuelsupplychain4780814.2Futureenergysupplychains–andmainbarriersA.9Newfeaturesofourmodel48References824Contents56EXECUTIVESUMMARY7DNVMaritimeForecastto20508ExecutivesummaryEXECUTIVESUMMARYMaritimeForecastto2050isoneoutofDNV’ssuiteofEnergyTransitionOutlookreports.Thislatesteditionprovidesanindependentoutlookofthemaritimeenergyfutureandexamineshowtheenergytransitionwillaffecttheindustry.Thefocusisonfuelavailabilityandinfra-Maritimeregulationwhichaimstoincreasetheuseofcarbon-neutralfuelsthroughanincreasinglystringentwell-to-wakeGHGintensityrequirement.Theseproposalsmaybe?nallyadoptedlaterin2022andtakeeffectfrom2024and2025,respectively.structuretotackletheshifttocarbon-neutral1fuels.Our—Theregulatoryandcommercialdriversareenabledbysupportingframeworksandstandardsspecifying,forexample,thesettingofscience-based,net-zeroGHGemissionstargets;taxonomiesforsustainableactivi-ties;sustainabilityevaluationcriteriaandcalculationmethodsforthewell-to-wakeGHGemissionsoffuels;andsupply-chainemissionreportingrequirements.updatedscenarioanalysisprovidessigni?cantnewinsightscomparedwithour2020analysis.Themaritimeindustrywillgothroughaperiodofrapidenergyandtechnologytransitionthatwillhaveamoresigni?cantimpactoncosts,assetvalues,andearningcapacitythanmanyearliertransitions.Shipownersarealreadyexperiencingincreasingpressuretoreducethegreenhousegas(GHG)footprintofmaritimetransport.Thispressureisbeingexertedbythreefundamentalregulatoryandcommercialdrivers:regulationsandpolicies,accesstoinvestorsandcapital,andcargoownerandconsumerexpectations.Figure1showsanoverviewofadoptedandproposedregulationsfromtheIMOandtheEU.Respondingtothedriversfordecarbonization,shipown-erswillneedtoapplynewtechnologiesandfuelstoreduceemissions.Thisreportprovidesanupdatedoutlookonshiptechnologiesandfuels,withanupdatedtimelineforthetechnologyreadinesslevelsofselectedalternativefueltechnologies,includingonboardcarboncaptureandstorage(CCS).Ourupdatedoutlookforthesedriversshowsthat:—TheInitialIMOGreenhouseGasStrategy(‘theIMOStrategy’)currentlydrivespolicydevelopmentwithininternationalshipping,andthenextwaveofregulationswilltakeeffectfrom1January2023.TheyaretheCII,We?ndthat:EEXI,andSEEMPPartIII.2Weexpectthemtohavea—Thetrendoflargershipsbeingorderedwithalternativefuelpropulsioniscontinuing,withfossilLNGasthedominantfuel(seeFigure2).Around5.5%ofthetotalgrosstonnageofshipsoperatingtoday,andathird(33%)ofthegrosstonnageonorder,canorwillbeabletooperateonalternativefuels.Thisincludeslique?ednaturalgas(LNG)carriers.Theuptakeofmethanolandlique?edpetroleumgas(LPG),andthe?rsthydro-gen-fuellednewbuilds,arestartingtoshowinthestatistics.signi?cantimpactondesignandoperationsofallships.—TheIMOStrategywillberevisedin2023,possiblystrengtheningitsemission-reductionambitions.Thiswillbefollowedbydevelopingthenextwaveofregulationsincludingmarket-basedmeasuressettingapriceonCOandarequirementtoaccountforwell-to-?wakeGHGemissionintensityoffuels.3—TheEUhasproposedtoincludeshippingintheEUEmissionsTradingSystem(EUETS)andtheFuelEU123FuelsthathavenonetGHGemissions;seeIntergovernmentalPanelonClimateChange(IPCC)de?nitionofcarbon-neutralathttps://www.ipcc.ch/sr15/chapter/glossaryCarbonIntensityIndicator(CII);EnergyEf?ciencyeXistingshipIndex(EEXI);ShipEnergyEf?ciencyManagementPlan(SEEMP)Well-to-wakereferstotheassessmentofGHGemissionsfromprimaryproductiontocarriageofthefuelinaship'stank(well-to-tank,or‘upstreamemissions’)andfromtheship'sfueltanktotheexhaust(tank-to-propellerortank-to-wake,or‘downstreamemissions’).See/en/MediaCentre/HotTopics/Pages/Cut-ting-GHG-emissions.aspx9DNVMaritimeForecastto2050—Thestronginterestinammoniaasfuel,asre?ectedintationofsafetyregulations.Thetoxicityofmethanolandammonia,andextreme?ammabilityofhydrogen,bringsnewsafetychallenges.conceptsandpilotstudies,iscurrentlyrestrictedbyimmatureconvertertechnologies.—Ammoniaandhydrogenonboardfueltechnologieswillbeavailableinthreetoeightyears,accordingtoourestimates.Forammonia,weseedevelopmentof2-strokeand4-strokeenginetechnologiesonparallelpaths,enablinguptakeindeep-seaandregionalshort-seashipping.—ThereisincreasedinterestinusingonboardCCSwithconventionalfossilfuelsbecauseofsigni?cantbarrierstotheuptakeofcarbon-neutralfuels.OnboardCCSmaybeapplicableforsomeshipsegmentsdependingonregulatoryandland-basedinfrastructuredevelopments.MoredemonstrationandpilotprojectswillbeneededtoenhancethetechnologyreadinessofonboardCCS.SeveralongoingR&Dprojectsaddressbarrierstoimplemen-tation.—Short-seashippingisexpectedtobeinstrumentalformaturinghydrogentechnology.Consequently,thedevelopmentoffuelcellsand4-strokeenginesisaheadofotherhydrogenenergyconverters.—Thecurrenttechnologyreadinesslevelsofmethanolfueltechnologiesarehigherthanforammoniaandhydrogen.Thisreportalsoprovidesanoutlookonalternativefuelproductionandinfrastructure.Decarbonizingshippingwillresultinaprofoundtransitioninthewayfuturemarinefuelsareproducedandmadeavailabletotheshipping?eet.—Usingnewfuelsandfueltechnologieswillrequireallmaritimeindustrystakeholderstofocusincreasinglyonsafety,includingthedevelopmentandimplemen-Figure1IMOandEUregulatoryframeworkforGHGemissionsreductionfrominternationalshippingEUEmissionsTradingSystemGlobalmarket-basedmeasureFuelEUMaritimeIMO–adoptedIMO–proposedGlobalGHGfuelstandard?Addresses:Ship/?eetGHGemissions?Applicablemeasures:AllGHGreductionmeasures?Addresses:Fuelwell-to-wakeGHGintensity?Applicablemeasures:Alternativefuels,shorepower,windEU–proposed(Fitfor55)OperationalrequirementDesignrequirementFleetemissionsGHGpriceFUELCarbonIntensityIndicatorShipEnergyEf?ciencyManagementPlanEEDI/EEXI?Addresses:Actualcarbonintensity?Applicablemeasures:Allmeasuresexceptlogistics?Addresses:Idealcarbonintensity?Applicablemeasures:Newships:Hull,machinery,LNG,speed;Existingships:Speed,basichullimprovements?Addresses:Continuousimprovement?Applicablemeasures:Allmeasuresexceptlogistics10ExecutivesummaryWe?ndthat:emissions.TomaximizetheGHGreductionpotentialofsustainablebiomass–potentiallyanimportantsourceforcarbon-neutraldrop-infuelsforconven-tionalmachinery–thisshouldbereservedforhard-to-abatesectorslikeshippingandaviation,ratherthanforelectricityproduction.—Shipping’sfuturefuelmarketwillbemorediverse,reliantonmultipleenergysources,andmoreintercon-nectedandintegratedwithregionalenergymarkets,regionalenergyproduction,andregionalindustry.—Futurefuelsupplyforshippingwillrelyonavailabilityandpriceoftheenergysources:renewableelectricity,sustainablebiomass,orfossilenergywithCCS(seeFigure3).Availabilitymayconstrainthecomingenergytransitioninshipping.—Providedthatenergycanbemadeavailable,produc-tioncapacitywillbeabarrierandmustbescaleduptomeetshipping’scomingdemandforcarbon-neutralfuels.Thiswillrequiremassiveinvestment,thoughsomeexistingproductionfacilitiescanbereused.Forthevariousfuelproductionandsupplypaths,thefocusshouldbeonreducingenergylossesinproduction,distribution,andconversiononboard.Developingthenecessaryinfrastructureandproductioncapacitywill—Becausenoindustrycandecarbonizeinisolation,globalindustriesneedtomaketherightchoicestogether,andsustainableenergyshouldbedirectedtowhereithasthebiggestimpactonreducingFigure2Alternativefueluptakeintheworld?eetbynumberofshipsandgrosstonnageNUMBEROFSHIPSShipsinoperationShipsonorder11Methanol19LPG3Hydrogen35Methanol57LPG98.8%conventionalfuel396Battery/Hybrid78.9%conventionalfuel417Battery/HybridWorld?eet923LNGOrderbook534LNG1349Total1046TotalIN%OFGROSSTONNAGEShipsinoperation0.02%Methanol0.06%LPGShipsonorder0.02%Battery/Hybrid1.45%Methanol0.06%Battery/Hybrid1.52%LPG94.5%conventionalfuel66.8%conventionalfuel5.39%LNG30.2%LNGWorld?eetOrderbook5.5%Total33.2%TotalKey:Liquefiednaturalgas(LNG);liquefiedpetroleumgas(LPG)Sources:IHSMarkit()andDNV’sAlternativeFuelsInsightsfortheshippingindustry–?AFIplatform()11Figure3Thefuturecarbon-neutralenergysupplychainBioElectroBlueCO212Executivesummarytaketime,becostly,andinvolvemanystakeholdersinthesupplychain.—variationsforspeci?cfueltypes,inwhichkeyinputfactorsimpactingtherelativecostdifferencesbetweenfuelswithineachfamilyareexamined.—Co-operationwithmajorenergyandfuelproviderswillbeimportanttosupplythefuturefuels.Portswillplaykeyrolesinthegreenmaritimetransitionbyservingasenergyhubsprovidingbothshore-sideelectricityandinfrastructureforstoringandfuellingshipswithfuturefuels,aswellassupportingthe?rstmoversandestablishinggreenenergycorridors.Regardingthefuturefuelmixinthemodelledscenarios(Figure4),we?ndthefollowing:—Regulatorypoliciesandprimaryenergypricesarekeydriversforuptakeofcarbon-neutralfuelandthefuturefuelmix.Theuptakeofcarbon-neutralfuelneedstopickupinthemid-2030s,reaching40%ofthefuelmixin2050underthecurrentIMOambitionsand100%todecarbonizeshippingfully.Fossilverylowsulphurfueloil(VLSFO)/marinegasoil(MGO)andLNGareinrapiddeclinebymid-centuryorarephasedoutcompletelyinthemostambitiousdecar-bonizationscenarios.LNG,however,seessigni?cantuptaketoaround20%to30%ofthefuelmixpriortotheaccelerationofthetransitiontocarbon-neutralfuels.Figure4presentstheenergymixin2050forthe24modelledscenarios.Thisyearwepresentanupdatedportfolioofscenarios,builtwithanenhancedversionofourGHGPathwayModeltoexplorethefueltransitionthatshippingisfacing.Weinvestigatehowthefuturefuelmixanduptakeofcarbon-neutralfuelsareimpactedbytheavailabilityofenergysourcesandotherkeyinputsforfuelproduction,andbypriceassumptionsonemergingfuels,technologies,andretro?ts.Wealsoassessfuelcostsregionally,andhowthebuild-upofregionalfuelproductionandinfrastructureimpactthedevelopmentofthefuelmix.—Itishardtoidentifyclearwinnersamongthemanydifferentcarbon-neutralfueloptionsgiventheuncertaintiesonpriceandavailability,butwecanoutlineunderwhatconditionseachwillproliferate.Bio-LNG,bio-MGOandbio-methanol,whicharerelativelyenergy-densehydrocarbons,wouldbethepreferredfuels,givensuf?cientavailabilityofsustain-ablebiomass.Theuptakeofbio-methanolisverysensitivetotheproductioncostcomparedwithbio-MGOandbio-LNG.Withlowavailabilityofsustainablebiomass,thepricesofbiofuelswilllikelybeuncompetitivewiththoseofelectrofuelsandbluefuels.Signi?cantuncertaintiesaroundseveralfactorsin?u-enceourprojectedenergytransitionfromconventionaltocarbon-neutralfuels.Consideringtheseuncertain-ties,whichprecludedevelopingasingle‘mostlikely’projection,wehavedevelopedandprovideasetofscenarios.Eachdescribesapossibledevelopmentofthefuture?eetcomposition,energyuseandfuelmix,andemissionsto2050,underaparticularsetofframingconditions,andwithoutprejudgingthelikelihoodoftheseconditions.Wehavedeveloped24scenariostoexplore:—Theavailabilityofelectrofuelsdepends?rstlyontheavailabilityofrenewableelectricitytoproducehydro-genbyelectrolysis.Thisrequiresthephasingoutoffossilenergyfrompowergeneration,whichisstillalongwayoffinmostregions.Usingelectricityevenpartlygeneratedfromfossilfuelstoproduceelectro-fuelsisnotenergyef?cientandcouldleadtohighernetemissions.Thesecondprerequisiteforelectrofu-elsistheavailabilityofsustainablecarbonfromeitherbiogenicsourcesordirectaircapture.Thiscarbon—twodecarbonizationpathways,oneinwhichshippingachievestheambitionssetinthecurrentIMOGHGStrategy,includinga50%reductionoftotalGHGemissionsin2050;andasecond,inwhichtheambitionistodecarbonizethe?eetby2050.—variationsonthreefuelfamilies,inwhichwesimulatetheavailabilityofsustainablebiomasstoproducebiofuels,renewableelectricitytoproducee-fuels,andfossilfuelscombinedwithCCStoproducebluefuels.13DNVMaritimeForecastto2050couldbecombinedwiththehydrogenproducedbyelectrolysistoproducee-MGO,e-LNG,ore-metha-fuel,withbio-MGOore-MGObeingusedaspilotfuels.4nol,againtakingadvantageofusingmoreener-gy-densefuels.Withoutthiscarbonbeingavailableandaffordable,e-ammoniawouldbethepreferred—Theavailabilityofbluefuelsdependsontheeffective-nessofcarboncapture,aswellasinfrastructureforpermanentstorageofthecapturedcarbon.Withhigh4Thepre?x‘e-‘denotesanelectrofuel,‘bio-‘a(chǎn)biofuel,and‘blue’afuelproducedfromfossilenergywithCCSFigure4Our24scenariosforthemaritimeenergymixin205012FossilfuelsHFO+scrubberLSFO+MGOLNG345Biofuelsbio-MGO6bio-LNG7bio-methanol89Electrofuelse-MGO101112131415161718192021222324e-LNGe-NH3e-methanolBluefuelsblueNH3Electricityfromgrid0%10%20%30%40%50%60%70%80%90%100%Key:Ammonia(NH3);biofuel(bio-);electrofuel(e-);fossilfuelwithCCS(blue);heavyfueloil(HFO);liquefiednaturalgas(LNG);lowsulphurfueloil(LSFO);marinegasoil(MGO)14Executivesummaryavailability,blueammoniaisthepreferredfuel,withbio-MGOore-MGOaspilotfuels.MatureCCStechnologyandinfrastructurecouldalsomakeonboardCCSaviablealternativewherefossilfuelscontinuetobeusedontheship.ConcludingremarksTheinitialpreparationfordecarbonizationiswellunder-waywithregulatoryandcommercialdriversandasupportingframeworkcomingintoplace.Scrutinyisfocusedonfullsupply-chainemissions,includingfromshipsandtheproductionandsupplyoffuel.Weseeprogressinonboardfueltechnologydevelopment,andthe?eet’suptakeofalternativefuelsisincreasing.However,severalfueltechnologiesthatmaybeneededin2050areimmature.—Theuseofdrop-infuels–suchasbio-LNG,e-LNG,bio-MGOande-MGO–issigni?cantinallscenariosanddependsonthepaceofdecarbonization.Withslowerdecarbonizationwithmoderateoperationalrequirements,fossilfuelscombinedwithjusttherequiredamountofdrop-infuelsarepreferredtoswitchingtoammoniaormethanolfuelsystems,eventhoughthesefuelsarelikelylessexpensivethanthedrop-infuels.Moreeffortisneededtobringdownbarriersandspeeduptheprogressofnext-generationcarbon-neutralships.Thiswillrequireacceleratedtechnologydevelopment,large-scalepilotingfordeep-seavessels,andensuringsafeapplicationofnewfuelsonboardandonshore.Strongeremphasisisneededonsystem-levelthinkingandintegrationofallavailabletechnologies.Thiswillrequiretime,investment,andcombiningeffortsfromallstakeholdersinthemaritimesupplychain.Greenenergycorridors,aconcepttakingshapenow,couldsupportthiseffortbypairingcommitmentsonfuelsupplyanddemand,andreducing?rst-moverrisk.Theideaistohelpstartshippingdecarbonizationbyincreasingtheavail-abilityofalternativefuelsinconnectedregions.Signi?cantinvestmentisneededincomingdecadestoenablethetransitiontocarbon-neutralshipping.We?ndthat:—USD8billion(bn)to28bnisneededannuallyinadditionaltotalinvestmentonshipsinatransitionphasetowardsdecarbonizationin2050.Thelargestinvestmentscomeinscenarioswithhighuptakeofammoniaormethanol.—Fuelinfrastructureinvestmentswilloutpaceonboardinvestmentsinalmostallscenarios.Decarbonizingshippingcompletelyby2050willrequireabout2.5timesmoreinvestmentthanifpursuingcurrentIMOambitions.AboutUSD28bnto90bnperyearisneededonshoretoscaleupproduction,fueldistribu-tion,andbunkeringinfrastructuretosupply100%carbon-neutralfuelsby2050.Thelargestinvestmentscomeinscenarioswithhighuptakeofelectrofuels.—ThemoreexpensiveenergysourcesandonshoreinvestmentscouldincreasetheannualfuelcostsbymorethanUSD100bnto150bnwhenfullydecarbon-ized,a70%to100%increasefromtoday.Shipownersandotherstakeholders–suchasgovern-ments,charterers,portsandfuelsuppliers–canuseour24scenariostosupportdecision-makingtominimizecarbonriskandexploreeffectivepolicyinterventionssuchasgreencorridors.Uncertaintyoverthepriceandavailabilityofenergysourcesmeansthatfuel?exibilityandFuelReadysolutions,combinedwithimprovedenergyef?ciency,remainkeystrategiesthatcouldeasethetransitionandminimizetheriskofinvestinginstrandedassets.Digitalizationwillenabletheunlockingoffurtherenergy-ef?ciencypotentialandwillsupportthenecessarycollaborationandinformationsharingneededtoacceleratethetransition.15161INTRODUCTION17DNVMaritimeForecastto20501INTRODUCTIONTh’s2022suiteofEnergyTransitionOutlookreports.ThislatesteditionofMaritimeForecastto2050givesanindependentoutlookofthemaritimeenergyfutureandexamineshowthetransitionwillaffecttheindustry.Itprovidesvaluableinsightsfordecisionmakersrangingfromshipowners,charterers,fuelsuppliers,ports,?nanceandinsurance,throughtonationalandregionalpolicymakers.18dCHAPTER1Morespeci?cally,theoutlookfocusesonfuelavailabilityandinfrastructuretotackletheshifttocarbon-neutralinvestmentsareneededduringthenextdecadestoenablethetransition.Whiletheindustryhasbeendiscussingemissionsreductionformanyyears,themostlikelysolutionsstillfacechallengesandbarriersincluding–thefocusofthisyear’sstudy–fuelavailability.DNV’salternativefueluptakeanalysisindicatesthatthetransi-tionhasstartedslowly,with33%ofgrosstonnageintheorderbookabletooperateonalternativefuel(heavilydominatedbyLNG).5fuels.Wesigni?cantlyupdateour2020scenarioanalysisofthemaritimeenergyfuture(DNV,2021c;DNV,2020)asshippingexperiencesincreasingpressuretodecarbonizeoperationsandreduceemissionstoair.Regulatoryrequirementsaddressinggreenhousegas(GHG)emis-sionstakeshapeinboththeIMOandEU,andareenabledbysupportingframeworksandstandards.Examplesoftheseenablersare:settingscience-basednet-zeroGHGemissionstargets;taxonomiesforsustainableactivities;sustainabilityevaluationcriteriaandwell-to-wakeGHGemissioncalculationmethodsforfuels;andsupplychainreportingrequirements.Mostnotably,inApril2018theIMOadoptedanambitiousGHGemissions-reductionstrategyforinternationalshipping.2023willseetheimplementationoffurtherregulatorymeasurestoaddressthedecarbonizationofshipping.InNovember2021,theIMOMarineEnvironmentProtectionCommit-tee’s77thsession(MEPC77)alsorecognizedtheneedtostrengthentheambitionsofitsGHGstrategywhenitisrevisedin2023.Increasingly,wealsoseekeystakehold-erssuchasbanksandcargoownersfocusingondecar-bonization.Allthispointstoachangingbusinessenvironmentforshipsinthenearfuture,shapingthefuture?eetinimportantways,particularlyinthechoiceoffuelsandtechnologies.Inthisyear’sreportwehaveupdatedourscenariolibraryofregulations,futuretechnologies,andcosts,tounder-standthecomingtransitionsothatstakeholderscanmakeinformeddecisions.Wehavemodelledtwodifferentdecarbonizationpathways:thecurrentIMOambitionsto2050,andafulldecarbonizationby2050.WerefertothesehenceforthasIMOambitionsandDecarbonizationby2050.Ourdecarbonizationmodel-lingshowsadiverseenergymixcomprisingbothfossilandcarbon-neutralfuels,wherefossilfuelsaregraduallyphasedoutby2050.Thisreportstartsbypresentingupdatedoutlooksondriversandregulations(Chapter2)thenshiptechnolo-giesandfuels(Chapter3),withestimatedmaturationtimelinesforenergyconverters,onboardCCStechnolo-gies,andcorrespondingsafetyregulationsforonboarduse.Weintroduceanentirelynewoutlookonalternativefuelproductionandinfrastructure,includingavailabilityandpricesfromtheupdatedMarineFuelPriceMapper(Chapter4).Thesechaptersprovideinputtoourupdatedworld?eetscenariomodelling(Chapter5),includingmodellingoftheimpactofmeasurestoincreaseregionalavailability,suchasgreencorridors.Incontrasttopastenvironmentalrequirements,meetingGHGtargetsrequiresfundamentallymorechallengingtechnologicalandoperationalchangesforshipping.Inprevioustransitions,theindustrymovedfromwindtocoalandsteam,andthentooil–andeveryshipmadethesametransition.Forthetransitionnowunderway,therearemanyoptionsforcarbon-neutralfuels(bio,electro,orblue),suchasammonia,diesel,electricity,hydrogen,methaneandmethanol–allshipswillprobablynottransitiontothesamefuel.Theexistenceofmanytransitionpathwaysisdrivingcomplexity.Thechallengesincludeatransitiontonewandalternativeloworzero-carbonfuelsandnon-conventionaltechnologies.Thisrequiresthesimultaneousintroductionofnewtechnologiesonshipsandloworzero-carbonfuelproductionandinfrastructureonshore,wheresigni?cant5Fuelsthat

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論