




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.2.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]3.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有4.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.5.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.6.函數(shù)()的圖像可以是()A. B.C. D.7.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.8.已知,,,,則()A. B. C. D.9.已知函數(shù)是偶函數(shù),當(dāng)時,函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.10.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則11.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標(biāo)為,則的最小值是()A. B. C. D.12.若將函數(shù)的圖象上各點橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點對稱 D.函數(shù)在上最大值是1二、填空題:本題共4小題,每小題5分,共20分。13.在一次醫(yī)療救助活動中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)14.如果拋物線上一點到準(zhǔn)線的距離是6,那么______.15.已知兩動點在橢圓上,動點在直線上,若恒為銳角,則橢圓的離心率的取值范圍為__________.16.設(shè)向量,,且,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(I)當(dāng)時,解不等式.(II)若不等式恒成立,求實數(shù)的取值范圍18.(12分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達(dá)點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.19.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值.20.(12分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫(yī)用防護(hù)服2.6萬套N95口軍47.9萬個,醫(yī)用一次性口罩172.87萬個,護(hù)目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務(wù),該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?21.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.22.(10分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當(dāng)四邊形為菱形時,求長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
如圖所示,設(shè)的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.2、B【解析】
作出可行域,對t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時,可行域即為如圖中的△OAM,此時目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標(biāo)函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.3、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當(dāng)時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當(dāng)時,因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時,一定有,故本說法正確;D:當(dāng)時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.4、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題5、C【解析】
由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.6、B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.7、C【解析】
取中點,連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.8、D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.9、A【解析】
根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時,單調(diào)遞減時,單調(diào)遞增又且,即本題正確選項:【點睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.10、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.11、C【解析】
在對稱軸處取得最值有,結(jié)合,可得,易得曲線的解析式為,結(jié)合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學(xué)生數(shù)形結(jié)合、數(shù)學(xué)運算的能力,是一道中檔題.12、A【解析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時,在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯誤;當(dāng)時,,關(guān)于點對稱,錯誤;當(dāng)時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.【點睛】解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).14、【解析】
先求出拋物線的準(zhǔn)線方程,然后根據(jù)點到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【點睛】本小題主要考查拋物線的定義,屬于基礎(chǔ)題.15、【解析】
根據(jù)題意可知圓上任意一點向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點向橢圓所引的兩條切線互相垂直,因此當(dāng)直線與圓相離時,恒為銳角,故,解得從而離心率.故答案為:【點睛】本題主要考查了橢圓的幾何性質(zhì),考查了邏輯分析能力,屬于中檔題.16、【解析】
根據(jù)向量的數(shù)量積的計算,以及向量的平方,簡單計算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標(biāo)計算,主要考查計算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據(jù)零點分區(qū)間法,去掉絕對值解不等式;(2)根據(jù)絕對值不等式的性質(zhì)得,因此將問題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當(dāng)時,不等式恒成立;當(dāng)時,解不等式得.綜上.所以實數(shù)的取值范圍為.18、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)取中點,連結(jié)、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點,、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【詳解】證明:(Ⅰ)取中點,連結(jié)、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點,、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,設(shè),則,,,,∴,,,設(shè)面的法向量,則,取,得,同理,得平面的法向量,設(shè)二面角的平面角為,則,∴二面角的余弦值為.【點睛】本題考查面面垂直及線面垂直性質(zhì)定理、線面垂直判定與性質(zhì)定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.19、(1),(2)【解析】
(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因為成等差數(shù)列,所以而,.20、每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低【解析】
設(shè)每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標(biāo)函數(shù)取最小值的整數(shù)解,即可得解.【詳解】設(shè)每天派出A型卡車輛,則派出B型卡車輛,運輸隊所花成本為元,由題意可知,,整理得,目標(biāo)函數(shù),如圖所示,為不等式組表示的可行域,由圖可知,當(dāng)直線經(jīng)過點時,最小,解方程組,解得,,然而,故點不是最優(yōu)解.因此在可行域的整點中,點使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低.【點睛】本題考查了線性規(guī)劃問題中的最優(yōu)整數(shù)解問題,考查了數(shù)形結(jié)合的思想,解題關(guān)鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù),同時注意整點的選取,屬于中檔題.21、(1)見解析;(2).【解析】
(1)設(shè)中點為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 印刷服務(wù)合同
- 手破碎機設(shè)備買賣合同
- 聘用出納合同增加多場景
- 生產(chǎn)車間承包合同協(xié)議
- 機械工程勞務(wù)分包合同
- 河北化工醫(yī)藥職業(yè)技術(shù)學(xué)院《中學(xué)生物課堂教學(xué)技能訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州華立科技職業(yè)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧波衛(wèi)生職業(yè)技術(shù)學(xué)院《界面化學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 宜春學(xué)院《需求工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 宿州職業(yè)技術(shù)學(xué)院《水質(zhì)工程學(xué)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫新版
- 《研學(xué)旅行市場營銷》課件-研學(xué)旅行市場營銷之社群營銷
- 醫(yī)美機構(gòu)客戶滿意度調(diào)查表
- clsim100-32藥敏試驗標(biāo)準(zhǔn)2023中文版
- LNG加氣站質(zhì)量管理手冊
- 艱難梭菌感染動物模型的建立及其應(yīng)用評價
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計規(guī)范
- 2024年公安部直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- 《旅游景點云南》課件2
- 2 我多想去看看(課件)-一年級下冊語文
- 《肺癌課件:基本概念與臨床表現(xiàn)》
評論
0/150
提交評論