版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.化簡的結(jié)果是()A. B. C. D.2.已知a為整數(shù),且<a<,則a等于A.1 B.2 C.3 D.43.若關(guān)于x的一元二次方程x2﹣2x+m=0沒有實(shí)數(shù)根,則實(shí)數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣14.如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(0,1),⊙C的圓心坐標(biāo)為(0,-1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是A.3 B. C. D.45.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(diǎn)(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=06.的值等于()A. B. C. D.7.如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米8.在下面的四個(gè)幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.9.下列計(jì)算正確的有()個(gè)①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點(diǎn)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.用教材中的計(jì)算器依次按鍵如下,顯示的結(jié)果在數(shù)軸上對應(yīng)點(diǎn)的位置介于()之間.A.B與C B.C與D C.E與F D.A與B12.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點(diǎn)的半徑D.垂直于同一直線的兩條直線互相垂直二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.14.已知線段AB=2cm,點(diǎn)C在線段AB上,且AC2=BC·AB,則AC的長___________cm.15.分解因式:_______________.16.在某一時(shí)刻,測得一根長為1.5m的標(biāo)桿的影長為3m,同時(shí)測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.17.出售某種手工藝品,若每個(gè)獲利x元,一天可售出個(gè),則當(dāng)x=_________元,一天出售該種手工藝品的總利潤y最大.18.如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點(diǎn)O,則線段AO的最大值為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測量某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點(diǎn)P.在地面A處測得點(diǎn)M的仰角為58°、點(diǎn)N的仰角為45°,在B處測得點(diǎn)M的仰角為31°,AB=5米,且A、B、P三點(diǎn)在一直線上.請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)20.(6分)如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為1.當(dāng)m=1,n=20時(shí).①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.21.(6分)學(xué)了統(tǒng)計(jì)知識(shí)后,小紅就本班同學(xué)上學(xué)“喜歡的出行方式”進(jìn)行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答以下問題:(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出“騎車”部分所對應(yīng)的圓心角的度數(shù).(2)若由3名“喜歡乘車”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊(duì)參加一項(xiàng)活動(dòng),現(xiàn)欲從中選出2人擔(dān)任組長(不分正副),求出2人都是“喜歡乘車”的學(xué)生的概率,(要求列表或畫樹狀圖)22.(8分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點(diǎn)B,連接CO并延長交⊙O于點(diǎn)D、E,連接AD并延長交BC于點(diǎn)F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.23.(8分)如圖1,已知直線l:y=﹣x+2與y軸交于點(diǎn)A,拋物線y=(x﹣1)2+m也經(jīng)過點(diǎn)A,其頂點(diǎn)為B,將該拋物線沿直線l平移使頂點(diǎn)B落在直線l的點(diǎn)D處,點(diǎn)D的橫坐標(biāo)n(n>1).(1)求點(diǎn)B的坐標(biāo);(2)平移后的拋物線可以表示為(用含n的式子表示);(3)若平移后的拋物線與原拋物線相交于點(diǎn)C,且點(diǎn)C的橫坐標(biāo)為a.①請寫出a與n的函數(shù)關(guān)系式.②如圖2,連接AC,CD,若∠ACD=90°,求a的值.24.(10分)在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(-1,0)和點(diǎn)B(4,5).(1)求該拋物線的函數(shù)表達(dá)式.(2)求直線AB關(guān)于x軸對稱的直線的函數(shù)表達(dá)式.(3)點(diǎn)P是x軸上的動(dòng)點(diǎn),過點(diǎn)P作垂直于x軸的直線l,直線l與該拋物線交于點(diǎn)M,與直線AB交于點(diǎn)N.當(dāng)PM<PN時(shí),求點(diǎn)P的橫坐標(biāo)的取值范圍.25.(10分)如圖1,已知直線y=kx與拋物線y=交于點(diǎn)A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點(diǎn)P為拋物線第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說明理由;(3)如圖2,若點(diǎn)B為拋物線上對稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?26.(12分)某學(xué)校為弘揚(yáng)中國傳統(tǒng)詩詞文化,在九年級隨機(jī)抽查了若干名學(xué)生進(jìn)行測試,然后把測試結(jié)果分為4個(gè)等級;A、B、C、D,對應(yīng)的成績分別是9分、8分、7分、6分,并將統(tǒng)計(jì)結(jié)果繪制成兩幅如圖所示的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:(1)本次抽查測試的學(xué)生人數(shù)為,圖①中的a的值為;(2)求統(tǒng)計(jì)所抽查測試學(xué)生成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).27.(12分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
將除法變?yōu)槌朔ǎ喍胃?,再用乘法分配律展開計(jì)算即可.【詳解】原式=×=×(+1)=2+.故選D.【點(diǎn)睛】本題主要考查二次根式的加減乘除混合運(yùn)算,掌握二次根式的混合運(yùn)算法則是解題關(guān)鍵.2、B【解析】
直接利用,接近的整數(shù)是1,進(jìn)而得出答案.【詳解】∵a為整數(shù),且<a<,∴a=1.故選:.【點(diǎn)睛】考查了估算無理數(shù)大小,正確得出無理數(shù)接近的有理數(shù)是解題關(guān)鍵.3、C【解析】試題解析:關(guān)于的一元二次方程沒有實(shí)數(shù)根,,解得:故選C.4、B【解析】試題分析:解:當(dāng)射線AD與⊙C相切時(shí),△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設(shè)EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點(diǎn):1.切線的性質(zhì);2.三角形的面積.5、A【解析】
由圖像經(jīng)過點(diǎn)(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時(shí),y的值小于x=0時(shí)y的值,根據(jù)拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經(jīng)過點(diǎn)(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過點(diǎn)(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【點(diǎn)睛】此題主要考查拋物線的圖像,解題的關(guān)鍵是熟知拋物線的對稱性.6、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.7、C【解析】
過點(diǎn)A作AD⊥BC于點(diǎn)D.根據(jù)三角函數(shù)關(guān)系求出BD、CD的長,進(jìn)而可求出BC的長.【詳解】如圖所示,過點(diǎn)A作AD⊥BC于點(diǎn)D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.【點(diǎn)睛】本題主要考查三角函數(shù),解答本題的關(guān)鍵是熟練掌握三角函數(shù)的有關(guān)知識(shí),并牢記特殊角的三角函數(shù)值.8、B【解析】
由幾何體的三視圖知識(shí)可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細(xì)心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項(xiàng)不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項(xiàng)與題意相符;C、球的左視圖與主視圖都是圓,故C選項(xiàng)不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項(xiàng)不合題意;故選B.【點(diǎn)睛】本題主要考查了幾何題的三視圖,解題關(guān)鍵是能正確畫出幾何體的三視圖.9、C【解析】
根據(jù)積的乘方法則,多項(xiàng)式乘多項(xiàng)式的計(jì)算法則,完全平方公式,合并同類項(xiàng)的計(jì)算法則,乘方的定義計(jì)算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯(cuò)誤;②(x﹣2)(x+3)=x2+x﹣6,錯(cuò)誤;③(x﹣2)2=x2﹣4x+4,錯(cuò)誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計(jì)算正確的有2個(gè).故選C.【點(diǎn)睛】考查了積的乘方,多項(xiàng)式乘多項(xiàng)式,完全平方公式,合并同類項(xiàng),乘方,關(guān)鍵是熟練掌握計(jì)算法則正確進(jìn)行計(jì)算.10、D【解析】
求得頂點(diǎn)坐標(biāo),得出頂點(diǎn)的橫坐標(biāo)和縱坐標(biāo)的關(guān)系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點(diǎn)的橫坐標(biāo)為:x=﹣=﹣a﹣,縱坐標(biāo)為:y==﹣2a﹣,∴拋物線的頂點(diǎn)橫坐標(biāo)和縱坐標(biāo)的關(guān)系式為:y=2x+,∴拋物線的頂點(diǎn)經(jīng)過一二三象限,不經(jīng)過第四象限,故選:D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),得到頂點(diǎn)的橫縱坐標(biāo)的關(guān)系式是解題的關(guān)鍵.11、A【解析】試題分析:在計(jì)算器上依次按鍵轉(zhuǎn)化為算式為﹣=-1.414…;計(jì)算可得結(jié)果介于﹣2與﹣1之間.故選A.考點(diǎn):1、計(jì)算器—數(shù)的開方;2、實(shí)數(shù)與數(shù)軸12、C【解析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯(cuò)誤,例如對角線互相垂直的等腰梯形;B、錯(cuò)誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯(cuò)誤,垂直于同一直線的兩條直線平行.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、110°.【解析】
解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.14、【解析】
設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB列方程求解即可.【詳解】解:設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點(diǎn)睛】本題考查了黃金分割的應(yīng)用,關(guān)鍵是明確黃金分割所涉及的線段的比.15、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案為(x+y)(x-y).16、13【解析】
根據(jù)同時(shí)同地物高與影長成比列式計(jì)算即可得解.【詳解】解:設(shè)旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點(diǎn)睛】本題考查投影,解題的關(guān)鍵是應(yīng)用相似三角形.17、1【解析】先根據(jù)題意得出總利潤y與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題進(jìn)行解答.解:∵出售某種手工藝品,若每個(gè)獲利x元,一天可售出(8-x)個(gè),
∴y=(8-x)x,即y=-x2+8x,
∴當(dāng)x=-=1時(shí),y取得最大值.
故答案為:1.18、【解析】
過O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進(jìn)而可得AF=AO,根據(jù)正方形的性質(zhì)可得OB=OC,∠BOC=90°,由銳角互余的關(guān)系可得∠AOB=∠COF,進(jìn)而可得△AOB≌△COF,即可證明AB=CF,當(dāng)點(diǎn)A、C、F三點(diǎn)不共線時(shí),根據(jù)三角形的三邊關(guān)系可得AC+CF>AF,當(dāng)點(diǎn)A、C、F三點(diǎn)共線時(shí)可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【詳解】如圖,過O作OF⊥AO且使OF=AO,連接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AF=AO,∵四邊形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,當(dāng)點(diǎn)A、C、F三點(diǎn)不共線時(shí),AC+CF>AF,當(dāng)點(diǎn)A、C、F三點(diǎn)共線時(shí),AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AF=AO=7,∴AO=.故答案為【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握相關(guān)定理及性質(zhì)是解題關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、1.8米【解析】
設(shè)PA=PN=x,Rt△APM中求得=1.6x,在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.【詳解】在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,,設(shè)PA=PN=x,∵∠MAP=58°,∴=1.6x,在Rt△BPM中,,∵∠MBP=31°,AB=5,∴,∴x=3,∴MN=MP-NP=0.6x=1.8(米),答:廣告牌的寬MN的長為1.8米.【點(diǎn)睛】熟練掌握三角函數(shù)的定義并能夠靈活運(yùn)用是解題的關(guān)鍵.20、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】
(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;
②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;
(2)先確定出B(1,),D(1,),進(jìn)而求出點(diǎn)P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.【詳解】(1)①如圖1,,反比例函數(shù)為,當(dāng)時(shí),,,當(dāng)時(shí),,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點(diǎn)是線段的中點(diǎn),,當(dāng)時(shí),由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當(dāng)四邊形是正方形,記,的交點(diǎn)為,,當(dāng)時(shí),,,,,,,,,,.【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.21、(1)補(bǔ)全條形統(tǒng)計(jì)圖見解析;“騎車”部分所對應(yīng)的圓心角的度數(shù)為108°;(2)2人都是“喜歡乘車”的學(xué)生的概率為.【解析】
(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學(xué)生50人;總?cè)藬?shù)減乘車的和騎車的人數(shù)就是步行的人數(shù),根據(jù)數(shù)據(jù)補(bǔ)全直方圖即可;要求扇形的度數(shù)就要先求出騎車的占的百分比,然后再求度數(shù);(2)列出從這4人中選兩人的所有等可能結(jié)果數(shù),2人都是“喜歡乘車”的學(xué)生的情況有3種,然后根據(jù)概率公式即可求得.【詳解】(1)被調(diào)查的總?cè)藬?shù)為25÷50%=50人;則步行的人數(shù)為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應(yīng)的圓心角的度數(shù)=×360°=108°;(2)設(shè)3名“喜歡乘車”的學(xué)生表示為A、B、C,1名“喜歡騎車”的學(xué)生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學(xué)生有3種結(jié)果,所以2人都是“喜歡乘車”的學(xué)生的概率為.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.22、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點(diǎn)B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結(jié)合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質(zhì)即可得到結(jié)論;(3)設(shè)AB=2x,結(jié)合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結(jié)合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點(diǎn)B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設(shè)AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點(diǎn)睛:解答本題第3問的要點(diǎn)是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉(zhuǎn)化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.23、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】
1)首先求得點(diǎn)A的坐標(biāo),再求得點(diǎn)B的坐標(biāo),用h表示出點(diǎn)D的坐標(biāo)后代入直線的解析式即可驗(yàn)證答案。(2)①根據(jù)兩種不同的表示形式得到m和h之間的函數(shù)關(guān)系即可。②點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F,證得△ACE~△CDF,然后用m表示出點(diǎn)C和點(diǎn)D的坐標(biāo),根據(jù)相似三角形的性質(zhì)求得m的值即可。【詳解】解:(1)當(dāng)x=0時(shí)候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,該拋物線的解析式為:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴則平移后拋物線的解析式為:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是兩個(gè)拋物線的交點(diǎn),∴點(diǎn)C的縱坐標(biāo)可以表示為:(a﹣1)2+1或(a﹣n)2﹣n+2由題意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②過點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用和相似三角形的判定與性質(zhì),需綜合運(yùn)用各知識(shí)求解。24、(1)(2)(3)【解析】
(1)根據(jù)待定系數(shù)法,可得二次函數(shù)的解析式;(2)根據(jù)待定系數(shù)法,可得AB的解析式,根據(jù)關(guān)于x軸對稱的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),可得答案;(3)根據(jù)PM<PN,可得不等式,利用絕對值的性質(zhì)化簡解不等式,可得答案.【詳解】(1)將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,拋物線的解析式為y=x2﹣2x﹣3;(2)設(shè)AB的解析式為y=kx+b,將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,直線AB的解析式為y=x+1,直線AB關(guān)于x軸的對稱直線的表達(dá)式y(tǒng)=﹣(x+1),化簡,得:y=﹣x﹣1;(3)設(shè)M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.故當(dāng)PM<PN時(shí),求點(diǎn)P的橫坐標(biāo)xP的取值范圍是2<xP<2.【點(diǎn)睛】本題考查了二次函數(shù)綜合題.解(1)的關(guān)鍵是待定系數(shù)法,解(2)的關(guān)鍵是利用關(guān)于x軸對稱的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);解(3)的關(guān)鍵是利用絕對值的性質(zhì)化簡解不等式.25、(1)y=2x,OA=,(2)是一個(gè)定值,,(3)當(dāng)時(shí),E點(diǎn)只有1個(gè),當(dāng)時(shí),E點(diǎn)有2個(gè)?!窘馕觥浚?)把點(diǎn)A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=.(2)是一個(gè)定值,理由如下:如答圖1,過點(diǎn)Q作QG⊥y軸于點(diǎn)G,QH⊥x軸于點(diǎn)H.①當(dāng)QH與QM重合時(shí),顯然QG與QN重合,此時(shí);②當(dāng)QH與QM不重合時(shí),∵QN⊥QM,QG⊥QH不妨設(shè)點(diǎn)H,G分別在x、y軸的正半軸上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,當(dāng)點(diǎn)P、Q在拋物線和直線上不同位置時(shí),同理可得.①①如答圖2,延長AB交x軸于點(diǎn)F,過點(diǎn)F作FC⊥OA于點(diǎn)C,過點(diǎn)A作AR⊥x軸于點(diǎn)R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴點(diǎn)F(,0),設(shè)點(diǎn)B(x,),過點(diǎn)B作BK⊥AR于點(diǎn)K,則△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴點(diǎn)B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5(求AB也可采用下面的方法)設(shè)直線AF為y=kx+b(k≠0)把點(diǎn)A(3,6),點(diǎn)F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5在△ABE與△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.設(shè)OE=x,則AE=﹣x(),由△ABE∽△OED得,∴∴()∴頂點(diǎn)為(,)如答圖3,當(dāng)時(shí),OE=x=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年魯教版選擇性必修2物理上冊階段測試試卷含答案
- 2025年滬教版九年級化學(xué)上冊月考試卷
- 2025年新科版六年級語文下冊月考試卷
- 2025年粵教滬科版八年級科學(xué)下冊月考試卷
- 2024年人民版五年級英語下冊月考試卷
- 2025年滬教新版八年級地理上冊階段測試試卷
- 2024年人教A版高三化學(xué)下冊階段測試試卷含答案
- 2024物業(yè)管理服務(wù)成本構(gòu)成與社區(qū)文化活動(dòng)經(jīng)費(fèi)合同3篇
- 2024年院校招生代理合作協(xié)議模版版B版
- 2024年華東師大版四年級語文下冊月考試卷
- 供應(yīng)鏈ESG管理策略
- 2024秋期國家開放大學(xué)本科《納稅籌劃》一平臺(tái)在線形考(形考任務(wù)一至五)試題及答案
- 紙巾合同范本
- 四川省德陽市2025屆數(shù)學(xué)三年級第一學(xué)期期末聯(lián)考模擬試題含解析
- 2024年平面設(shè)計(jì)師技能及理論知識(shí)考試題庫(附含答案)
- 相互批評意見500條【5篇】
- 2024年高考真題-英語(新高考Ⅰ卷) 含解析
- 2023-2024年6月廣東省普通高中學(xué)業(yè)水平生物考試及答案
- 江蘇徐州歷年中考語文現(xiàn)代文閱讀之非連續(xù)性文本閱讀5篇(含答案)(2003-2023)
- 鐵路技術(shù)管理規(guī)程-20220507141239
- 2024年內(nèi)部執(zhí)業(yè)醫(yī)師考試試題
評論
0/150
提交評論