協(xié)會歷屆acm實習_第1頁
協(xié)會歷屆acm實習_第2頁
協(xié)會歷屆acm實習_第3頁
協(xié)會歷屆acm實習_第4頁
協(xié)會歷屆acm實習_第5頁
已閱讀5頁,還剩98頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第一 教學內(nèi) 第二 OJ上題目的解題報 動態(tài)規(guī) 數(shù)論相 圖論相 組合數(shù) 博弈 計算幾 第三章心得體 韋心得體 參考文 第一章學內(nèi)喻老師教學內(nèi)一個圖是一個三元組<V(G),E(G),φG>,其中V(G)是一個非空的結(jié)點集合,E(G)稱為邊集,φG是從邊集合E(G)到結(jié)點無序偶(有序偶)集合上的函數(shù)。子圖:設(shè)圖G=<V,E>,如果有圖 G‘,其頂點集合為G的頂點集的子集,邊集合為G的邊集的子集,則稱G’為G的子圖。路徑:從結(jié)點出發(fā)v0的交替序列 envn稱為聯(lián)結(jié)v0到vn回路:v0vnnv0=vnGuvu連通圖無向圖G是平凡圖或G中任意兩頂點都是連通的則稱G是連通圖。有向圖G中,略去各有向邊的方向后所得無向圖G是連通圖,則稱G為弱連通圖;若G中任意兩頂點一個可達另一個,則稱G為單向連通圖;若G中任意兩頂點相互可達,則稱G鄰接矩陣:用一個矩陣頂點之間是否直接有邊相連這個二元關(guān)系,設(shè)圖GnV={v1,v2,···,vn},nA(G)=(aij)Gadj,nadj1341340101110001000111010111110缺點不能隨機任意兩個頂點的關(guān)系一定要通過順序查找鏈表才能確//nGsturctEdge{intdest; intvalue; Edge* Edge*edge=newEdge[n];inti,u,v;}Edge*(u,vl=newEdge;ul->link=edge[u].link;edge[u].link=l;}//取頂點i的鄰接表的鏈表元l=edge[i].link;}}圖的問題之為拓撲排序。拓撲排序在實際生活中和算法中都有很大的應(yīng)沒有前驅(qū)--入度為零,刪除頂點及以它為尾的弧--弧頭頂點的1。12VjVjVk(k=1,2Vk度減1,并將入度為0的頂點進棧。最短路問題是指給定一個邊帶權(quán)的圖G,求從某個起始點到某個終點e應(yīng)用:在一個交通網(wǎng)絡(luò)中求城市之間的最短路徑,求互如果圖的邊所帶的權(quán)值規(guī)定為非負的,固定起始點s,要求sDijkstravoidDijkstra(int//DsPint*S=newint[n];int*D=newint[n];int*P=newEdgeDP{D[l->dest]=l-P[l- l=l-}n-1Sfor(inti=0;i<n-{intj,min=-SDw }//如果找不到符合條件的w,最短路已不存在,結(jié)束循環(huán) 將wSD l->destwl->dest,則更新l->dest的D值和它的最短的上一個頂if(D[l->dest]<0||D[w]+l->value<D[l-{D[l-dest]=D[w]+l->value;}l=l-G=<V,E>T=<V,E1>G一部分邊組成的子圖并且TTG當邊帶有權(quán)值,對于G的任意一個生成樹,把屬于T的各條邊的長度加起來的和成為T的長度,在G的所有生成樹中,路徑長度最小經(jīng)典算法:primeKluskalkruskal取所有結(jié)點中距離最小的兩個結(jié)點,看這兩個結(jié)點的路徑是否與已經(jīng)存在的結(jié)點路徑構(gòu)成回路,如果不構(gòu)成回路,那么這兩個結(jié)點的路徑就是最小生成樹的一條路,否的話舍棄這條路,繼續(xù)找所有結(jié)點最小的路直到所有的路都遍歷完.將邊按權(quán)從小到大排序,放到一個隊列中(按先進先出順序取邊T=<V,T=<T,E>中;T=<T,E>中的邊不形成回路T=<T,E>中;T黃老師教學內(nèi)動態(tài)規(guī)劃的簡介:求解決策過程(decisionprocess)最優(yōu)化的數(shù)學方法,是信息學奧賽的必考算法之一。動態(tài)規(guī)劃的概念及意義多階段決策過程的最優(yōu)化問題:含有遞推的思想以及各種數(shù)學原理(加法多階段決策過程的最優(yōu)化問題:含有遞推的思想以及各種數(shù)學原理(加法 基本思想雖然動態(tài)規(guī)劃主要用于求解以時間劃分階段的動態(tài)過程的優(yōu)化問題,但是一些與時間無關(guān)的靜態(tài)規(guī)劃,只要人為地引進時間因素,把它視為多階段決策過程,也可以用動態(tài)規(guī)劃方法方便地求解。們具有相同的填表格式。6. 基本模型根據(jù)上例分析和動態(tài)規(guī)劃的基本概念,可以得到動態(tài)規(guī)劃的基本模型如下:(1)確定問題的決策對象。(2)對決策過程劃分階段。(3)對各階段確定狀態(tài)變量。(4)根據(jù)狀態(tài)變量確定費用函數(shù)和目標函數(shù)。(5)建立各階段狀態(tài)變量的轉(zhuǎn)移過程,確定狀態(tài)轉(zhuǎn)移方程動態(tài)規(guī)劃適用條件:適用動態(tài)規(guī)劃的問題必須滿足最優(yōu)化原理和無后效性。1).最優(yōu)化原理(最優(yōu)子結(jié)構(gòu)性質(zhì))最優(yōu)化原理可這樣闡述:一個最優(yōu)化策略具有這樣的性質(zhì),不論過去狀態(tài)和決策如何,對前面的決策所形成的狀態(tài)而言,余下的諸決策必須構(gòu)成最優(yōu)策略。簡而言之,一個最優(yōu)化策略的子策略總是最優(yōu)的。一個問題滿足最優(yōu)化原理又稱其具有最優(yōu)子結(jié)構(gòu)性質(zhì)。2).無后效性:將各階段按照一定的次序排列好之后,對于某個給定的階段狀態(tài),它以前各階段的狀態(tài)無法直接影響它未來的決策,而只能通過當前的這個狀態(tài)。換句話說,每個狀態(tài)都是過去歷史的一個完整總結(jié)。這就是無后向性,又稱為無后效性。3).子問題的性動態(tài)規(guī)劃將原來具有指數(shù)級復(fù)雜度的搜索算法改進成龔老師主要給我們講解了計算幾何方面的內(nèi)容和怎樣使用opencv這個軟件。37509做題。doublemulti(TPointp1,TPointp2,TPoint{//求矢量[p0p1p0p2]//p0return(p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-0,p0p2p0p10,p0p2p0p1}折線的拐向的判斷(從p0向p1看過去的左邊)若(p2p1)叉乘(p1p00則p0p1在p1點拐向左側(cè)后得到(p2p1)叉乘(p1p00則p0p1p2若(p2p1)叉乘(p1p00則p0p1在p1點拐向右側(cè)后得到 S=ah/ S=absinC/ S=sqrt(p*(p-a)*(p-b)*(p-c)),p=(a+b+c)/ S=abc/R/{returnfabs(t.t[0].x*t.t[1].y+t.t[1].x*t.t[2].y+t.t[2].x*-t.t[1].x*t.t[0].y-t.t[2].x*t.t[1].y-t.t[0].x*t.t[2].y)/}doublepolygonArea(TPolygonp,int{doublearea;intarea=for(i=1;i<area+=(p.p[i-1].x*p.p[i%n].y-p.p[i%n].x*p.p[i-}returnfabs(area)/}{TCircletmp;doublea,b,c,c1,doublexA,yA,xB,yB,xC,yC;a=distance(t.t[0],t.t[1]);b=distance(t.t[1],c=distance(t.t[2],//Sa*b*cR/4;Rtmp.ra*b*ctriangleArea(t4;xA=t.t[0].x;yA=xB=t.t[1].x;yB=xC=t.t[2].x;yC=c1=(xA*xA+yA*yA-xB*xB-yB*yB)/2;c2=(xA*xA+yA*yA-xC*xC-yC*yC)/tmp.centre.x=(c1*(yA-yC)-c2*(yA-yB))/(xA-xB)*(yA-yC)-(xA-xC)*(yA-yB);tmp.centre.y=(c1*(xA-xC)-c2*(xA-xB))/(yA-yB)*(xA-xC)-(yA-yC)*(xA-xB);return}{TCircletmp;doublea,b,c,angleA,angleB,angleC,p,p2,p3,f1,f2;doublexA,yA,xB,yB,xC,yC;a=distance(t.t[0],b=distance(t.t[1],c=distance(t.t[2],S=p*p=(a+b+c)/r=S/P=2*S/(a+b+tmp.r=2*triangleArea(t)/(a+bangleA=acos((b*b+c*c-a*a)/(2*b*c));angleB=acos((a*a+c*c-b*b)/(2*a*c));angleC=acos((a*a+b*b-c*c)/(2*a*b));p=sin(angleA/2);p2=sin(angleB/2);p3=sin(angleC/xA=t.t[0].x;yA=xB=t.t[1].x;yB=xC=t.t[2].x;yC=f1=((tmp.r/p2)*(tmp.r/p2)-(tmp.r/p)*(tmp.r/p)+xA*xA-xB*xB+yA*yA-yB*yB)/2;f2=((tmp.r/p3)*(tmp.r/p3)-(tmp.r/p)*(tmp.r/p)+xA*xA-xC*xC+yA*yA-yC*yC)/2;tmp.centre.x=(f1*(yA-yC)-f2*(yA-yB))((xA-xB)*(yA-yC)-(xA-xC)*(yA-tmp.centre.y=(f1*(xA-xC)-f2*(xA-xB))((yA-yB)*(xA-xC)-(yA-yC)*(xA-return}boolisPointOnSegment(TPointp,TPointp1,TPoint{//判斷p點是否段p1p2//1.pp1p2//2.pp1p2if(multi(p1,p2,p)!=0)returnfalseif((p.x>p1.x&&p.x>p2.x)||(p.x<p1.x&&p.x<p2.x))returnfalse;if((p.y>p1.y&&p.y>p2.y)||(p.y<p1.y&&p.y<p2.y))returnfalse;returntrue;}boolisPointOnSegment(TPointp,TPointp1,TPoint{//判斷p點是否段p1p2//1.pp1p2//2.pp1p2if(multi(p1,p2,p)!=0)returnfalseif((p.x>p1.x&&p.x>p2.x)||(p.x<p1.x&&p.x<p2.x))returnfalse;if((p.y>p1.y&&p.y>p2.y)||(p.y<p1.y&&p.y<p2.y))returnfalse;returntrue;}opencv畫出圖形來檢驗我們所求的圓是否正確趙老師教學內(nèi)歐幾里得算法(輾轉(zhuǎn)相除法(A,B)=(B,Amodabmodk(amodk)bmod通過計算b的二進制位上的數(shù),并計算amodk,a^2modk……,通過相應(yīng)的a^bmodklog2(n)

lim(n)nn/Mp=2^p-1(0846個被發(fā)現(xiàn)nn N(n

N

(n)

kk

pei1ipii小于n且與n互素的數(shù)的個數(shù)

k 1abmodpa[bmod(p-1)]mod

(n)n1p

i1 i j1',1} j1',1}ornot1',?,- allare1'如果一個數(shù)是素數(shù)且x21mod當且僅當x1(mod算法:任取k個整數(shù)(b1,b2,……bk)

{bdd,

,b2j1d,b2jd}(mod 中任一種,且對于k個整數(shù)都成立。判斷其為素數(shù),出錯率為1/4k形如ax+by=n的式子(a,b,arith1e2c(cot.allns a

(tI

1 cane

)he(x1a2t/d)2a1t/d 2 1 2

a

a

(a

a

)t/dn=n1n2n3……nk考慮下列對應(yīng)關(guān)系a——(a1,a2,……,ak)ai屬于Zi=1,2,3,……kai=amod則a——(a1,a2,……,ak)有(a+b)modn——((a1+b1)modn1,(a2+b2)modn2,……,(ak+bk)modnk)(ab)modn——(a1b1modn1,……,akbkmodnk)intext(inta,intb,int&x,int&y) intt,d;if(b==0){x=1;y=0;returna;}d=ext(b,a%b,x,y);returnd;}int(intB[],intw[],int{intintd,x,y,a=0,m,n=1;for(i=0;i<k;i++)for{}if(a>0)returna;elsereturn(a+n);}第二章OJ上題目的解題報動態(tài)規(guī)Poj1050(韋Givenatwo-dimensionalarrayofpositiveandnegativeintegers,asub-rectangleisanycontiguoussub-arrayofsize1*1orgreaterlocatedwithinthewholearray.Thesumofarectangleisthesumofalltheelementsinthatrectangle.Inthisproblemthesub-rectanglewiththelargestsumisreferredtoasthe alsub-rectangle.Asanexample, alsub-rectangleofthe0-2-792-6-41-4-180-isinthelowerleft9-4-1andhasasumofTheinputconsistsofanN*Narrayofintegers.TheinputbeginswithasinglepositiveintegerNonalinebyitself,indicatingthesizeofthesquaretwo-dimensionalarray.ThisisfollowedbyN^2integersseparatedbywhitespace(spacesandnewlines).ThesearetheN^2integersofthearray,presentedinrow-majororder.Thatis,allnumbersinthefirstrow,lefttoright,thenallnumbersinthesecondrow,lefttoright,etc.Nmaybeaslargeas100.Thenumbersinthearraywillbeintherange[-127,127].Outputthesumofthealsub-Sample40-2-7092-6-41-41-80-Sampledpdp方程:第i個元素。usingnamespacestd;intmain(){intintn,i,j,k,l,max=0;{ }{ }}}}Michael喜歡滑雪百這并不奇怪,因為滑雪的確很刺激??墒菫榱双@得速度,降機來載你。Michael想知道載一個區(qū)域中最長底滑坡。區(qū)域由一個二維數(shù)組給 424252012111024-17-16-125-24-23-...-3-2-1更長。事輸入的第一行表示區(qū)域的行數(shù)R和列數(shù)C(1R,C100)R行,每行有C個整數(shù),代表高度h,0<=h<=10000。Sample512425201110Sampledp問題,要求最長路徑,我們可以用枚舉法把每一個點的大路徑這就是子問題了,m[i][j]數(shù)組代表從i,j點出發(fā)能滑雪的最大步數(shù),h[i][j]組原來的高度;dp方程為:usingnamespacestd;intintGetHigh(inti,int{if(m[i][j]!=-1)//m[i][j]的值已經(jīng)被計算過了returnm[i][j];{intmax=0;inttemp;{{}}{{}}{{}}{{}}returnm[i][j];}}int{inti,j,max;{}return}Apalindromeisasymmetricalstring,thatis,astringreadidenticallyfromlefttorightaswellasfromrighttoleft.Youaretowriteaprogramwhich,givenastring,determinestheminimalnumberofcharacterstobeinsertedintothestringinordertoobtainapalindrome.Asanexample,byinserting2characters,thestring"Ab3bd"canbetransformedintoapalindrome("dAb3bAd"or"Adb3bdA").However,insertingfewerthan2charactersdoesnotproduceapalindrome.Yourprogramistoreadfromstandardinput.Thefirstlinecontainsoneinteger:thelengthoftheinputstringN,3<=N<=5000.ThesecondlinecontainsonestringwithlengthN.Thestringisformedfromuppercaselettersfrom'A'to'Z',lowercaselettersfrom'a'to'z'anddigitsfrom'0'to'9'.Uppercaseandlowercaselettersaretobeconsidereddistinct.Yourprogramistowritetostandardoutput.Thefirstlinecontainsoneinteger,whichisthedesiredminimalnumber.Sample5Sample2和上一道題非常相似,狀態(tài)轉(zhuǎn)移方程:1如果第i個元素和第j個相同則Count[5005][5005]太大了剛開始超內(nèi)存了.short剛好可以過。不過把時間和intn;chara[5005];void{int{}}

else}void{ }}Atpresent,theuniversityrankingsareverypopular.Theyhelpseniorhighschoolstudentstochooseuniversityforfurtherstudent.Asweknow,auniversityusuallyhasmanydifferentdepartments,suchasdepartmentofcomputerscience,departmentofElectronicEngineering,etc.Someofthemarequitegoodwhencomparingtotheotheruniversities,butothersarenot.So,mostofuniversityrankingsarecomposedofseveralrankinglists,eachlistforonedepartment.Butherecomesaproblemthatsometimesit’shardtodeterminewhichuniversityisbetter,whencomparingtwouniversitieswitheachother.Fortunay,DoctorBobhasadvancedanewconceptnamedabsoluybetter”,withwhichtheproblemabovecanbepartiallysolved.Now,hereisanexampletoexintheconcept“absoluyAssumethattherearethreeuniversities(X,Y,Z)andeveryuniversityhasthreedepartment:CS,EEandFLS.Andtherankingofdifferentdepartmentsareasfollowed:TherankingofCS:X>Y>Z(X>YmeansXhaveabetterCSdepartmentthanY)TherankingofEEL:X>Z>YTherankingofFLS:Obviously,eachdepartmentofuniversityXisbetterthanthatofuniversityY.Thenit’scalledthatXisabsoluybetterthanY.Usingthe“absoluybetter”concept,it espossibletocomparesomepairsoftheuniversities.NowBobhasthecompleterankingofdifferentdepartmentsofmanyuniversities,andhewantstofindkuniversities(U1,…,UK)suchthatUiisabsoluybetterthanUj(foranyi<j).CouldyoulBobtheumvalueofK?<DIVtheof>ThefirstlineoftheinputisapositiveintegerC.CisthenumberoftestcasesThefirstlineofeachtestcaseistwopositiveintegerN,M(0<N,M≤100),NisthenumberofuniversitiesandMisthenumberofdepartments.AndthenMlinesfollow.Theith(1<=i<=M)linecontainsNnumbersUi(1≤i≤N,1≤Ui≤N),indicatingtherankingoftheithdepartment.IfUniversityUiprecedestoUniversityUjinlinek,thenthekthdepartmentofUiisbetterthanthekthdepartmentofUj.TheoutputshouldconsistofClines,onelineforeachtestcase.Eachlineonlycontainsoneinteger-the umvalueofkasdescribedabove.Noredundantspacesareneeded.Sample2SampleOutput看到該題發(fā)現(xiàn)是一個的動態(tài)規(guī)劃,很難解決,到的是求最長上升 ybetter”就是全部的都要比另一所學校好才行,于是我將學校按照某int//num用于保存輸入的數(shù)據(jù),re[i]0-istruct//ansvoidint}}}}}}}Poj1050TotheMax(周源TimeLimit:1000MS MemoryLimit:10000KTotalSubmissions:21755Accepted:11278Givenatwo-dimensionalarrayofpositiveandnegativeintegers,asub-rectangleisanycontiguoussub-arrayofsize1*1orgreaterlocatedwithinthewholearray.Thesumofarectangleisthesumofalltheelementsinthatrectangle.Inthisproblemthesub-rectanglewiththelargestsumisreferredtoasthealsub-rectangle.Asanexample,thealsub-rectangleofthearray:0-2-792-6-41-4-180-isinthelowerleft9-4-1andhasasumofTheinputconsistsofanN*Narrayofintegers.TheinputbeginswithasinglepositiveintegerNonalinebyitself,indicatingthesizeofthesquaretwo-dimensionalarray.ThisisfollowedbyN^2integersseparatedbywhitespace(spacesandnewlines).ThesearetheN^2integersofthearray,presentedinrow-majororder.Thatis,allnumbersinthefirstrow,lefttoright,thenallnumbersinthesecondrow,lefttoright,etc.Nmaybeaslargeas100.Thenumbersinthearraywillbeintherange[-127,127].Outputthesumofthealsub-Sample40-2-7092-6-41-41-80-Samplen*n(0<n<=100),請我們找一個子矩陣,使這個子矩陣之和最大。21維的方法,1n0的話1424行一直到4行獨自一行的情況。428Kintmap[105][105],b[105],n;intfind_max(){inti,sum=0,max=0;}return}void{int }{ }}}}poj1141--BracketsSequence(韋TimeLimit: MemoryLimit:TotalSubmissions:12495Accepted:3345SpecialLetusdefinearegularbracketssequenceinthefollowingEmptysequenceisaregularIfSisaregularsequence,then(S)and[S]arebothregularIfAandBareregularsequences,thenABisaregularForexample,allofthefollowingsequencesofcharactersareregularbracketssequences:(),[],(()),([]),()[],()[()]Andallofthefollowingcharactersequencesare(,[,),)(,([)],Somesequenceofcharacters'(',')','[',and']'isgiven.Youaretofindtheshortestpossibleregularbracketssequence,thatcontainsthegivencharactersequenceasasubsequence.Here,astringa1a2...aniscalledasubsequenceofthestringb1b2...bm,ifthereexistsuchindices1=i1<i2<...<in=m,thataj=bijforall1=j=n.Theinputfilecontainsatmost100brackets(characters'(',')','['and']')thataresituatedonasinglelinewithoutanyothercharactersamongthem.Writetotheoutputfileasinglelinethatcontainssomeregularbracketssequencethathastheminimalpossiblelengthandcontainsthegivensequenceasasubsequence.SampleSample題目大意:給你一貫括號序列(只包含小括號和中括號),讓你找出長度最小的regularbracketssequence包含此子序列.其中的regularbracketssequence定義如regularbrackets如果s是一個regularbracketssequence,那么[s]也是一個regularbracketssequence,(s)regularbracketssequence.如果A,B都是regularbracketssequence,那么AB也是一個regularbrackets例如:()、[]、()[]、([])、([])()[()]regularbracketssequence而[[[(((((則都不是regularbracketssequence。其中以“([)]”為例,包含regularbracketssequence有兩個:()[()]或者是([])[].而你只要輸出其中一轉(zhuǎn)移方程告訴我們了。1.ij個字符匹配時(即為())2.不匹配時count[i][j]=min{count[i+1][j]+1,count[i][j-1]+1ans[i][j]表示第i到j(luò)個元素代碼usingnamespacestd;stringans[105][105];chara[105];intn,count[105][105];voiddp(){inti,j,k;{}}

{{}{{}}}}int{return0;}poj1160PostOffice(黃屹瀾TimeLimit:1000MSMemoryLimit:TotalSubmissions: Accepted:Thereisastraighthighwaywithvillagesalongsidethehighway.Thehighwayisrepresentedasanintegeraxis,andthepositionofeachvillageisidentifiedwithasingleintegercoordinate.Therearenotwovillagesinthesameposition.Thedistancebetweentwopositionsistheabsolutevalueofthedifferenceoftheirintegercoordinates.Postofficeswillbebuiltinsome,butnotnecessarilyallofthevillages.Avillageandthepostofficeinithavethesameposition.Forbuildingthepostoffices,theirpositionsshouldbechosensothatthetotalsumofalldistancesbetweeneachvillageanditsnearestpostofficeisminimum.Youaretowriteaprogramwhich,giventhepositionsofthevillagesandthenumberofpostoffices,computestheleastpossiblesumofalldistancesbetweeneachvillageanditsnearestpostoffice.Yourprogramistoreadfromstandardinput.Thefirstlinecontainstwointegers:thefirstisthenumberofvillagesV,1<=V<=300,andthesecondisthenumberofpostofficesP,1<=P<=30,P<=V.ThesecondlinecontainsVintegersinincreasingorder.TheseVintegersarethepositionsofthevillages.ForeachpositionXitholdsthat1<=X<=10000.ThefirstlinecontainsoneintegerS,whichisthesumofalldistancesbetweeneachvillageanditsnearestpostoffice.Sample10123679112244Sample9iij個郵局(j<=i),要是各個 個村莊推廣到多個。狀態(tài)轉(zhuǎn)移方voidmain() intn,m,i,j,mid,k;{{} }

{}}}poj1163TheTriangle(黃屹瀾TimeLimit:1000MS MemoryLimit:10000KTotalSubmissions:20992Accepted:121227 (FigureFigure1showsanumbertriangle.Writeaprogramthatcalculatesthehighestsumofnumberspassedonaroutethatstartsatthetopandendssomewhereonthebase.Eachstepcangoeitherdiagonallydowntotheleftordiagonallydowntotheright.Yourprogramistoreadfromstandardinput.ThefirstlinecontainsoneintegerN:thenumberofrowsinthetriangle.ThefollowingNlinesdescribethedataofthetriangle.Thenumberofrowsinthetriangleis>1but<=100.Thenumbersinthetriangle,allintegers,arebetween0and99.Yourprogramistowritetostandardoutput.ThehighestsumiswrittenasanSample573812744526Sampleintway[102][102],n;void{inti,j;}

void{inti,j,max; }}數(shù)論相Poj1061(韋也沒有約定見面的具置。不過青蛙們都是很樂觀的,它們覺得只要一直朝一點上,不然是都不可能碰面的。為了幫助這兩只樂觀的青蛙,你被要求我們把這兩只青蛙分別叫做青蛙A和青蛙B0度處為1米,這樣我們就得到了一條首尾相接的數(shù)軸。設(shè)青蛙A的出發(fā)點坐標是xB的出發(fā)點坐標是y。青蛙AmBnL輸入只包括一行5個整數(shù)x,y,m,n,L,其中x≠y ,0<m、n,0L 輸出碰面所需要的跳躍次數(shù),如果不可能碰面則輸出一行Sample1234Sampleintint相乘已經(jīng)超過了int的范圍,剛開始想用_int64,aclonglong才通過了。因為longlong不能用math.husingnamespacestd;longlongabs(longlong{if(a>0)returna;elsereturn-a;}int{longlongi,a,b,n,k,t,t1,t2,sign1,sign2,x0,y0,x1,y1,x,y,,z1,z2;{}{return0;}{if(a%b==1)break;}return0;}Somepeoplebelievethattherearethreecyclesina'slifethatstartthedayheorsheisborn.Thesethreecyclesarethephysical,emotional,andinlectualcycles,andtheyhaveperiodsoflengths23,28,and33days,respectively.Thereisonepeakineachperiodofacycle.Atthepeakofacycle,aperformsathisorherbestinthecorrespondingfield(physical,emotionalormental).Forexample,ifitisthementalcurve,thoughtprocesseswillbesharperandconcentrationwillbeeasier.Sincethethreecycleshavedifferentperiods,thepeaksofthethreecyclesgenerallyoccuratdifferenttimes.Wewouldliketodeterminewhenatriplepeakoccurs(thepeaksofallthreecyclesoccurinthesameday)forany.Foreachcycle,youwillbegiventhenumberofdaysfromthebeginningofthecurrentyearatwhichoneofitspeaks(notnecessarilythefirst)occurs.Youwillalsobegivenadateexpressedasthenumberofdaysfromthebeginningofthecurrentyear.Youtaskistodeterminethenumberofdaysfromthegivendatetothenexttriplepeak.Thegivendateisnotcounted.Forexample,ifthegivendateis10andthenexttriplepeakoccursonday12,theansweris2,not3.Ifatriplepeakoccursonthegivendate,youshouldgivethenumberofdaystothenextoccurrenceofatriplepeak.Youwillbegivenanumberofcases.Theinputforeachcaseconsistsofonelineoffourintegersp,e,i,andd.Thevaluesp,e,andiarethenumberofdaysfromthebeginningofthecurrentyearatwhichthephysical,emotional,andinlectualcyclespeak,respectively.Thevaluedisthegivendateandmaybesmallerthananyofp,e,ori.Allvaluesarenon-negativeandatmost365,andyoumayassumethatatriplepeakwilloccurwithin21252daysofthegivendate.Theendofinputisindicatedbyalineinwhichp=e=i=d=-1.Foreachtestcase,printthecasenumberfollowedbyamessageindicatingthenumberofdaystothenexttriplepeak,intheform:Case1:thenexttriplepeakoccursin1234days.Usethepluralform``days''eveniftheansweris1.SampleInput0000005203445628310223203301203-1-1-1-SampleCase1:thenexttriplepeakoccursin21252days.Case2:thenexttriplepeakoccursin21152days.Case3:thenexttriplepeakoccursin19575days.Case4:thenexttriplepeakoccursin16994days.Case5:thenexttriplepeakoccursin8910days.Case6:thenexttriplepeakoccursin10789days.天、28天和33天,讓我們算出三個周期同時達到的時間2328*33*n%23=1n=828對于33算出n=2。a,b,c,d別表示體力、情感和智力出現(xiàn)的時間,d代表給定的時間384Kvoidmain(){int{ printf("Case%d:thenexttriplepeakoccursin%d}}3個質(zhì)數(shù),通過(n*A1*A2)%A3==1A3A2A11的那個對應(yīng)的N然后通過(N1*A2*A3+N2*A1*A3+N3*A2*A1)%(A1*A2*A3)poj1014–Dividing(韋TimeLimit:1000MS MemoryLimit:10000KTotalSubmissions:31636 Accepted:7740MarshaandBillownacollectionofmarbles.Theywanttosplitthecollectionamongthemselvessothatbothreceiveanequalshareofthemarbles.Thiswouldbeeasyifallthemarbleshadthesamevalue,becausethentheycouldjustsplitthecollectioninhalf.Butunfortunay,someofthemarblesarelarger,ormorebeautifulthanothers.So,MarshaandBillstartbyassigningavalue,anaturalnumberbetweenoneandsix,toeachmarble.Nowtheywanttodividethemarblessothateachofthemgetsthesametotalvalue.Unfortunay,theyrealizethatitmightbeimpossibletodividethemarblesinthisway(evenifthetotalvalueofallmarblesiseven).Forexample,ifthereareonemarbleofvalue1,oneofvalue3andtwoofvalue4,thentheycannotbesplitintosetsofequalvalue.So,theyaskyoutowriteaprogramthatcheckswhetherthereisafairpartitionofthemarbles.Eachlineintheinputfiledescribesonecollectionofmarblestobedivided.Thelinescontainsixnon-negativeintegersn1,...,n6,whereniisthenumberofmarblesofvaluei.So,theexamplefromabovewouldbedescribedbytheinput-line"101200".TheumtotalnumberofmarbleswillbeThelastlineoftheinputfilewillbe"000000";donotprocessthisForeachcollection,output"Collection#k:",wherekisthenumberofthetestcase,andtheneither"Canbedivided."or"Can'tbedivided.".OutputablanklineaftereachtestSample101200100011000000SampleCollectionCan'tbeCollectionCanbe1880kBintmy_find(intstart,intres){intreturn0;{{return1; return1;}if(gogal>sum)return}}return}void inti,num=1,p,k[7];charch; {printf("Collection#%d:\nCan'tbeprintf("Collection#%d:\nCanbeprintf("Collection#%d:\nCan'tbe}}Problemsinvolvingthecomputationofexactvaluesofverylargemagnitudeandprecisionarecommon.Forexample,thecomputationofthenationaldebtisataxingexperienceformanycomputersystems.ThisproblemrequiresthatyouwriteaprogramtocomputetheexactvalueofRnwhereRisarealnumber(0.0<R<99.999)andnisanintegersuchthat0<n<=25.TheinputwillconsistofasetofpairsofvaluesforRandn.TheRvaluewilloccupycolumns1through6,andthenvaluewillbeincolumns8and9.TheoutputwillconsistofonelineforeachlineofinputgivingtheexactvalueofR^n.Leadingzerosshouldbesuppressedintheoutput.Insignificanttrailingzerosmustnotbeprinted.Don'tprintthedecimalpointiftheresultisaninteger.Sample9Sample . 解題思路:這道題是高精度的運算,對于CC++來編寫有一定難度,但用javajava中有大叔這樣一個類,就可以直接編寫C++來編寫就會很麻煩,但我們可以通過模擬手算法來計算這個usingnamespacestd;intmain(){inta[1001],i,j,re,n,b[1010],k,z,s[30],t;charstr[30];{{{}}

{{intc=0;{}}}while(!a[i]&&i>=re)i--;while(!a[j]&&j<re)j++;{}}return}圖論相Stockbrokersareknowntooverreacttorumours.Youhavebeencontractedtodevelopamethodofspreadingdisinformationamongstthestockbrokerstogiveyouremployerthetacticaledgeinthestockmarket.For umeffect,youhavetospreadtherumoursinthefastestpossibleway.Unfortunayforyou,stockbrokersonlytrustinforationcoingfromtheir"Trustedsources"Thismeansyouhavetotakeintoaccountthestructureoftheircontactswhenstartingarumour.Ittakesacertainamountoftimeforaspecificstockbrokertopasstherumourontoeachofhiscolleagues.Yourtaskwillbetowriteaprogramthatlsyouwhichstockbrokertochooseasyourstartingpointfortherumour,aswellasthetimeitwilltakefortherumourtospreadthroughoutthestockbrokercommunity.ThisdurationismeasuredasthetimeneededforthelasttoreceivetheYourprogramwillinputdatafordifferentsetsofstockbrokers.Eachsetstartswithalinewiththenumberofstockbrokers.Followingthisisalineforeachstockbrokerwhichcontainsthenumberofpeoplewhotheyhavecontactwith,whothesepeopleare,andthetimetakenforthemtopassthemessagetoeach .Theformatofeachstockbrokerlineisasfollows:Thelinestartswiththenumberofcontacts(n),followedbynpairsofintegers,onepairforeachcontact.Eachpairlistsfirstanumberreferringtothecontact(e.g.a'1'meansnumberoneintheset),followedbythetimeinminutestakentopassamessagetothat.Therearenospecialpunctuationsymbolsorspacingrules.Eachisnumbered1throughtothenumberofstockbrokers.Thetimetakentopassthemessageonwillbebetween1and10minutes(inclusive),andthenumberofcontactswillrangebetween0andonelessthanthenumberofstockbrokers.Thenumberofstockbrokerswillrangefrom1to100.Theinputisterminatedbyasetofstockbrokerscontaining0(zero)people.Foreachsetofdata,yourprogrammustoutputasinglelinecontainingthewhoresultsinthefastestmessagetransmission,andhowlongbeforethelastwillreceiveanygivenmessageafteryougiveittothis,measuredinintegerItispossiblethatyourprogramwillreceiveanetworkofconnectionsthatexcludessomes,i.e.somepeoplemaybeunreachable.Ifyourprogramdetectssuchabrokennetwork,simplyoutputthemessage"disjoint".NotethatthetimetakentopassthemessagefromAtoBisnotnecessarilythesameasthetimetakentopassitfromBtoA,ifsuchtransmissionispossibleatall.Sample3224352123621222534428505225150Sample33iksta),iksta的時間復(fù)雜度是iktai表示從指定點到第i點的最短距離,沒循環(huán)一次i就更新一次。usingnamespacestd;#defineN#defineMAXvoiddijkstra(intv){intbools[N]={false};{inttemp=MAX;intu=v;{}}}int{{{}if(n==0)break;{{}}{{}}{}{}}return}Inakbit2'scomplementnumber,wherethebitsareindexedfrom0tok-1,theweightofthemostsignificantbit(i.e.,inpositionk-1),is-2^(k-1),andtheweightofabitinanypositioni(0≤i<k-1)is2^i.Forexample,a3bitnumber101is-2^2+0+2^0=-3.Anegativelyweightedbitiscalledanegabit(suchasthemostsignificantbitina2'scomplementnumber),andapositivelyweightedbitiscalledaposibit.AFunnumbersystemisapositionalbinarynumbersystem,whereeachbitcanbeeitheranegabit,oraposibit.Forexampleconsidera3-bitfunnumbersystemFun3,wherebitsinpositions0,and2areposibits,andthebitinposition1isanegabit.(110)Fun3isevaluatedas2^2-2^1+0=3.NowyouaregoingtohavefunwiththeFunnumbersystems!Youaregiventhedescriptionofak-bitFunnumbersystemFunk,andanintegerN(possiblynegative.YoushoulddeterminethekbitsofarepresentationofNinFunk,orreportthatitisnotpossibletorepresentthegivenNinthegivenFunk.Forexample,arepresentationof-1intheFun3numbersystem(definedabove),is011(evaluatedas0-2^1+2^0),andrepresenting6inFun3isThefirstlineoftheinputfilecontainsasingleintegert(1≤t≤10),thenumberoftestcases,followedbytheinputdataforeachtestcase.Eachtestcaseisgiveninthreeconsecutivelines.Inthefirstlinethereisapositiveintegerk(1≤k≤64).Inthesecondlineofatestdatathereisastringoflengthk,composedonlyoflettersn,andp,describingtheFunnumbersystemforthattestdata,whereeachn(p)indicatesthatthebitinthatpositionisanegabit(posibit).ThethirdlineofeachtestdatacontainsanintegerN(-2^63≤N<2^63),thenumbertorepresentedintheFunknumbersystembyyourprogram.Foreachtestdata,youshouldprintonelinecontainingeitherak-bitstringrepresentingthegivennumberNintheFunknumbersystem,orthewordImpossible,whenitisimpossibletorepresentthegivennumber.Sample234Sample權(quán)用p表示,負權(quán)用n表示,然后給你一個正整數(shù)N,要你用給定了權(quán)重的k位二進制表示,如果不能表示則輸Impossiable。否則輸出相應(yīng)的二進制位。一位控制的是奇偶。然后再判斷正負,若為負這個1的意思就是減1所以要再原是用來存放第i384Kvoid intcharlonglongbig;//{{}else{b[i]=0;}}}}}1122--FDNYtotheRescue!.(周源TimeLimit:1000MS MemoryLimit:10000KTotalSubmissions:1180 Accepted:322TheFireDepartmentofNewYork(FDNY)hasalwaysbeenproudoftheirresponsetimetofiresinNewYorkCity,buttheywanttomaketheirresponsetimeevenbetter.Tohelpthemwiththeirresponsetime,theywanttomakesurethatthedispatchersknowtheclosestfirehousetoanyaddressinthecity.YouhavebeenhiredtowritethissoftwareandareentrustedwithmaintainingtheproudtraditionofFDNY.Conceptually,thesoftwarewillbegiventheaddressofthefire,thelocationsofthefirehouses,streetintersections,andthetimeittakestocoverthedistancebetween

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論