版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
算法案例整體設(shè)計教學(xué)分析在學(xué)生學(xué)習(xí)了算法的初步知識,理解了表示算法的算法步驟、程序框圖和程序三種不同方式以后,再結(jié)合典型算法案例,讓學(xué)生經(jīng)歷設(shè)計算法解決問題的全過程,體驗算法在解決問題中的重要作用,體會算法的基本思想,提高邏輯思維能力,發(fā)展有條理地思考與數(shù)學(xué)表達能力.三維目標(biāo)1.理解算法案例的算法步驟和程序框圖.2.引導(dǎo)學(xué)生得出自己設(shè)計的算法程序.3.體會算法的基本思想,提高邏輯思維能力,發(fā)展有條理地思考與數(shù)學(xué)表達能力.重點難點教學(xué)重點:引導(dǎo)學(xué)生得出自己設(shè)計的算法步驟、程序框圖和算法程序.教學(xué)難點:體會算法的基本思想,提高邏輯思維能力,發(fā)展有條理地思考與數(shù)學(xué)表達能力.課時安排3課時教學(xué)過程第1課時案例1輾轉(zhuǎn)相除法與更相減損術(shù)導(dǎo)入新課思路1(情境導(dǎo)入)大家喜歡打乒乓球吧,由于東、西方文化及身體條件的不同,西方人喜歡橫握拍打球,東方人喜歡直握拍打球,對于同一個問題,東、西方人處理問題方式是有所不同的.在小學(xué),我們學(xué)過求兩個正整數(shù)的最大公約數(shù)的方法:先用兩個數(shù)公有的質(zhì)因數(shù)連續(xù)去除,一直除到所得的商是互質(zhì)數(shù)為止,然后把所有的除數(shù)連乘起來.當(dāng)兩個數(shù)公有的質(zhì)因數(shù)較大時(如8251與6105),使用上述方法求最大公約數(shù)就比較困難.下面我們介紹兩種不同的算法——輾轉(zhuǎn)相除法與更相減損術(shù),由此可以體會東、西方文化的差異.思路2(直接導(dǎo)入)前面我們學(xué)習(xí)了算法步驟、程序框圖和算法語句.今天我們將通過輾轉(zhuǎn)相除法與更相減損術(shù)來進一步體會算法的思想.推進新課新知探究提出問題(1)怎樣用短除法求最大公約數(shù)?(2)怎樣用窮舉法(也叫枚舉法)求最大公約數(shù)?(3)怎樣用輾轉(zhuǎn)相除法求最大公約數(shù)?(4)怎樣用更相減損術(shù)求最大公約數(shù)?討論結(jié)果:(1)短除法求兩個正整數(shù)的最大公約數(shù)的步驟:先用兩個數(shù)公有的質(zhì)因數(shù)連續(xù)去除,一直除到所得的商是兩個互質(zhì)數(shù)為止,然后把所有的除數(shù)連乘起來.(2)窮舉法(也叫枚舉法)窮舉法求兩個正整數(shù)的最大公約數(shù)的解題步驟:從兩個數(shù)中較小數(shù)開始由大到小列舉,直到找到公約數(shù)立即中斷列舉,得到的公約數(shù)便是最大公約數(shù).(3)輾轉(zhuǎn)相除法輾轉(zhuǎn)相除法求兩個數(shù)的最大公約數(shù),其算法步驟可以描述如下:第一步,給定兩個正整數(shù)m,n.第二步,求余數(shù)r:計算m除以n,將所得余數(shù)存放到變量r中.第三步,更新被除數(shù)和余數(shù):m=n,n=r.第四步,判斷余數(shù)r是否為0.若余數(shù)為0,則輸出結(jié)果;否則轉(zhuǎn)向第二步繼續(xù)循環(huán)執(zhí)行.如此循環(huán),直到得到結(jié)果為止.這種算法是由歐幾里得在公元前300年左右首先提出的,因而又叫歐幾里得算法.(4)更相減損術(shù)我國早期也有解決求最大公約數(shù)問題的算法,就是更相減損術(shù).《九章算術(shù)》是中國古代的數(shù)學(xué)專著,其中的“更相減損術(shù)”也可以用來求兩個數(shù)的最大公約數(shù),即“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也.以等數(shù)約之.”翻譯為現(xiàn)代語言如下:第一步,任意給定兩個正整數(shù),判斷它們是否都是偶數(shù),若是,用2約簡;若不是,執(zhí)行第二步.第二步,以較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))或這個數(shù)與約簡的數(shù)的乘積就是所求的最大公約數(shù).應(yīng)用示例例1用輾轉(zhuǎn)相除法求8251與6105的最大公約數(shù),寫出算法分析,畫出程序框圖,寫出算法程序.解:用兩數(shù)中較大的數(shù)除以較小的數(shù),求得商和余數(shù):8251=6105×1+2146.由此可得,6105與2146的公約數(shù)也是8251與6105的公約數(shù),反過來,8251與6105的公約數(shù)也是6105與2146的公約數(shù),所以它們的最大公約數(shù)相等.對6105與2146重復(fù)上述步驟:6105=2146×2+1813.同理,2146與1813的最大公約數(shù)也是6105與2146的最大公約數(shù).繼續(xù)重復(fù)上述步驟:2146=1813×1+333,1813=333×5+148,333=148×2+37,148=37×4.最后的除數(shù)37是148和37的最大公約數(shù),也就是8251與6105的最大公約數(shù).這就是輾轉(zhuǎn)相除法.由除法的性質(zhì)可以知道,對于任意兩個正整數(shù),上述除法步驟總可以在有限步之后完成,從而總可以用輾轉(zhuǎn)相除法求出兩個正整數(shù)的最大公約數(shù).算法分析:從上面的例子可以看出,輾轉(zhuǎn)相除法中包含重復(fù)操作的步驟,因此可以用循環(huán)結(jié)構(gòu)來構(gòu)造算法.算法步驟如下:第一步,給定兩個正整數(shù)m,n.第二步,計算m除以n所得的余數(shù)為r.第三步,m=n,n=r.第四步,若r=0,則m,n的最大公約數(shù)等于m;否則,返回第二步.程序框圖如下圖:程序:INPUTm,nDOr=mMODnm=nn=rLOOPUNTILr=0PRINTmEND點評:從教學(xué)實踐看,有些學(xué)生不能理解算法中的轉(zhuǎn)化過程,例如:求8251與6105的最大公約數(shù),為什么可以轉(zhuǎn)化為求6105與2146的公約數(shù).因為8251=6105×1+2146,可以化為8251-6105×1=2164,所以公約數(shù)能夠整除等式兩邊的數(shù),即6105與2146的公約數(shù)也是8251與6105的公約數(shù).變式訓(xùn)練你能用當(dāng)型循環(huán)結(jié)構(gòu)構(gòu)造算法,求兩個正整數(shù)的最大公約數(shù)嗎?試畫出程序框圖和程序.解:當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖如下圖:程序:INPUTm,nr=1WHILEr>0r=mMODnm=nn=rWENDPRINTmEND例2用更相減損術(shù)求98與63的最大公約數(shù).解:由于63不是偶數(shù),把98和63以大數(shù)減小數(shù),并輾轉(zhuǎn)相減,如下圖所示.98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98和63的最大公約數(shù)等于7.點評:更相減損術(shù)與輾轉(zhuǎn)相除法的比較:盡管兩種算法分別來源于東、西方古代數(shù)學(xué)名著,但是二者的算理卻是相似的,有異曲同工之妙.主要區(qū)別在于輾轉(zhuǎn)相除法進行的是除法運算,即輾轉(zhuǎn)相除;而更相減損術(shù)進行的是減法運算,即輾轉(zhuǎn)相減,但是實質(zhì)都是一個不斷的遞歸過程.變式訓(xùn)練用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個數(shù)324,243,135的最大公約數(shù).解:324=243×1+81,243=81×3+0,則324與243的最大公約數(shù)為81.又135=81×1+54,81=54×1+27,54=27×2+0,則81與135的最大公約數(shù)為27.所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法:324-243=81,243-81=162,162-81=81,則324與243的最大公約數(shù)為81.135-81=54,81-54=27,54-27=27,則81與135的最大公約數(shù)為27.所以,三個數(shù)324、243.135的最大公約數(shù)為27.例3(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).(2)用更相減損術(shù)求80和36的最大公約數(shù).解:(1)輾轉(zhuǎn)相除法求最大公約數(shù)的過程如下:123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,最后6能被3整除,得123和48的最大公約數(shù)為3.(2)我們將80作為大數(shù),36作為小數(shù),因為80和36都是偶數(shù),要除公因數(shù)2.80÷2=40,36÷2=18.40和18都是偶數(shù),要除公因數(shù)2.40÷2=20,18÷2=9.下面來求20與9的最大公約數(shù),20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,2-1=1,可得80和36的最大公約數(shù)為22×1=4.點評:對比兩種方法控制好算法的結(jié)束,輾轉(zhuǎn)相除法是到達余數(shù)為0,更相減損術(shù)是到達減數(shù)和差相等.變式訓(xùn)練分別用輾轉(zhuǎn)相除法和更相減損術(shù)求1734,816的最大公約數(shù).解:輾轉(zhuǎn)相除法:1734=816×2+102,816=102×8(余0),∴1734與816的最大公約數(shù)是102.更相減損術(shù):因為兩數(shù)皆為偶數(shù),首先除以2得到867,408,再求867與408的最大公約數(shù).867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.∴1734與816的最大公約數(shù)是51×2=102.利用更相減損術(shù)可另解:1734-816=918,918-816=102,816-102=714,714-102=612,612-102=510,510-102=408,408-102=306,306-102=204,204-102=102.∴1734與816的最大公約數(shù)是102.知能訓(xùn)練求319,377,116的最大公約數(shù).解:377=319×1+58,319=58×5+29,58=29×2.∴377與319的最大公約數(shù)為29,再求29與116的最大公約數(shù).116=29×4.∴29與116的最大公約數(shù)為29.∴377,319,116的最大公約數(shù)為29.拓展提升試寫出利用更相減損術(shù)求兩個正整數(shù)的最大公約數(shù)的程序.解:更相減損術(shù)程序:INPUT“m,n=”;m,nWHILEm<>nIFm>nTHENm=m-nELSEm=n-mENDIFWENDPRINTmEND課堂小結(jié)(1)用輾轉(zhuǎn)相除法求最大公約數(shù).(2)用更相減損術(shù)求最大公約數(shù).思想方法:遞歸思想.作業(yè)分別用輾轉(zhuǎn)相除法和更相減損術(shù)求261,319的最大公約數(shù).分析:本題主要考查輾轉(zhuǎn)相除法和更相減損術(shù)及其應(yīng)用.使用輾轉(zhuǎn)相除法可依據(jù)m=nq+r,反復(fù)執(zhí)行,直到r=0為止;用更相減損術(shù)就是根據(jù)m-n=r,反復(fù)執(zhí)行,直到n=r為止.解:輾轉(zhuǎn)相除法:319=261×1+58,261=58×4+29,58=29×2.∴319與261的最大公約數(shù)是29.更相減損術(shù):319-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版苗圃苗木線上線下銷售渠道合作協(xié)議4篇
- 2025年度個人房產(chǎn)抵押貸款還款協(xié)議書模板4篇
- 2025年度航空航天模具研發(fā)制造合同4篇
- 二零二五版豪華車型購車指標(biāo)使用權(quán)租賃協(xié)議3篇
- 2025年物業(yè)廣告位租賃與環(huán)保理念推廣合作協(xié)議3篇
- 2025版企業(yè)內(nèi)部員工技能培訓(xùn)學(xué)員協(xié)議3篇
- 2025年環(huán)保打印機購銷合同綠色環(huán)保版4篇
- 個人招標(biāo)工作心得:2024年實踐與思考3篇
- 二零二五年度航空器租賃合同租賃期限與維護保養(yǎng)責(zé)任4篇
- 2025年農(nóng)業(yè)大棚租賃與智能灌溉系統(tǒng)安裝合同4篇
- 開展課外讀物負(fù)面清單管理的具體實施舉措方案
- 2025年云南中煙工業(yè)限責(zé)任公司招聘420人高頻重點提升(共500題)附帶答案詳解
- 2025-2030年中國洗衣液市場未來發(fā)展趨勢及前景調(diào)研分析報告
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(解析版)
- 2023年江蘇省南京市中考化學(xué)真題
- 供電副所長述職報告
- 校園欺凌問題成因及對策分析研究論文
- 技術(shù)支持資料投標(biāo)書
- 老年人意外事件與與預(yù)防
- 預(yù)防艾滋病、梅毒和乙肝母嬰傳播轉(zhuǎn)介服務(wù)制度
- 《高速鐵路客運安全與應(yīng)急處理》課程標(biāo)準(zhǔn)
評論
0/150
提交評論