2023年貴州省安順市數(shù)學高一下期末學業(yè)水平測試試題含解析_第1頁
2023年貴州省安順市數(shù)學高一下期末學業(yè)水平測試試題含解析_第2頁
2023年貴州省安順市數(shù)學高一下期末學業(yè)水平測試試題含解析_第3頁
2023年貴州省安順市數(shù)學高一下期末學業(yè)水平測試試題含解析_第4頁
2023年貴州省安順市數(shù)學高一下期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如下圖所示(單位:cm)則該幾何體的表面積(單位:)是()A. B. C. D.2.在銳角中,內(nèi)角,,的對邊分別為,,,,,成等差數(shù)列,,則的周長的取值范圍為()A. B. C. D.3.已知,,則()A. B. C. D.4.把函數(shù)圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),再把所得曲線向右平移個單位長度,最后所得曲線的一條對稱軸是()A. B. C. D.5.某小組由名男生、名女生組成,現(xiàn)從中選出名分別擔任正、副組長,則正、副組長均由男生擔任的概率為()A. B. C. D.6.下列函數(shù)中,在區(qū)間上單調(diào)遞增的是()A. B. C. D.7.已知關于的不等式的解集是,則的值是()A. B. C. D.8.如直線與平行但不重合,則的值為().A.或2 B.2 C. D.9.中國數(shù)學家劉微在《九章算術注》中提出“割圓”之說:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣.”意思是“圓內(nèi)接正多邊形的邊數(shù)無限增加的時候,它的周長的極限是圓的周長,它的面積的極限是圓的面積”.如圖,若在圓內(nèi)任取一點,則此點取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為()A. B. C. D.10.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知一個幾何體的三視圖如圖所示,其中正視圖是等腰直角三角形,則該幾何體的體積為__________.12.已知向量滿足,則13.等差數(shù)列,的前項和分別為,,且,則______.14.由正整數(shù)組成的數(shù)列,分別為遞增的等差數(shù)列、等比數(shù)列,,記,若存在正整數(shù)()滿足,,則__________.15.已知求______________.16.已知角滿足且,則角是第________象限的角.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在如圖所示的幾何體中,D是AC的中點,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求證:AC⊥FB;(Ⅱ)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC.18.在中,內(nèi)角A、B、C所對的邊分別為,,,已知.(Ⅰ)求角B的大小;(Ⅱ)設,,求.19.已知圓的半徑是2,圓心在直線上,且圓與直線相切.(1)求圓的方程;(2)若點是圓上的動點,點在軸上,的最大值等于7,求點的坐標.20.已知集合.(Ⅰ)求;(Ⅱ)若集合,寫出集合的所有子集.21.已知向量,,函數(shù).(1)若,,求的值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

通過三視圖的觀察可得到該幾何體是由一個圓錐加一個圓柱得到的,表面積由一個圓錐的表面積和一個圓柱的側(cè)面積組成【詳解】圓柱的側(cè)面積為,圓錐的表面積為,其中,,。選C【點睛】幾何體的表面積一定要看清楚哪些面存在,哪些面不存在2、A【解析】

依題意求出,由正弦定理可得,再根據(jù)角的范圍,可求出的范圍,即可求得的周長的取值范圍.【詳解】依題可知,,由,可得,所以,即,而.∴,即.故的周長的取值范圍為.故選:A.【點睛】本題主要考查正弦定理在解三角形中的應用,兩角和與差的正弦公式的應用,以及三角函數(shù)的值域求法的應用,意在考查學生的轉(zhuǎn)化能力和數(shù)學運算能力,屬于中檔題.3、C【解析】

由放縮法可得出,再利用特殊值法以及不等式的基本性質(zhì)可判斷各選項中不等式的正誤.【詳解】,,可得.取,,,則A、D選項中的不等式不成立;取,,,則B選項中的不等式不成立;且,由不等式的基本性質(zhì)得,C選項中的不等式成立.故選:C.【點睛】本題考查不等式正誤的判斷,一般利用不等式的性質(zhì)或特殊值法進行判斷,考查推理能力,屬于中等題.4、A【解析】

先求出圖像變換最后得到的解析式,再求函數(shù)圖像的對稱軸方程.【詳解】由題得圖像變換最后得到的解析式為,令,令k=-1,所以.故選A【點睛】本題主要考查三角函數(shù)圖像變換和三角函數(shù)圖像對稱軸的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、B【解析】

根據(jù)古典概型的概率計算公式,先求出基本事件總數(shù),正、副組長均由男生擔任包含的基本事件總數(shù),由此能求出正、副組長均由男生擔任的概率.【詳解】某小組由2名男生、2名女生組成,現(xiàn)從中選出2名分別擔任正、副組長,基本事件總數(shù),正、副組長均由男生擔任包含的基本事件總數(shù),正、副組長均由男生擔任的概率為.故選.【點睛】本題主要考查古典概型的概率求法。6、A【解析】

判斷每個函數(shù)在上的單調(diào)性即可.【詳解】解:在上單調(diào)遞增,,和在上都是單調(diào)遞減.故選:A.【點睛】考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和反比例函數(shù)的單調(diào)性.7、A【解析】

先利用韋達定理得到關于a,b的方程組,解方程組即得a,b的值,即得解.【詳解】由題得,所以a+b=7.故選:A【點睛】本題主要考查一元二次不等式的解集,意在考查學生對該知識的理解掌握水平和分析推理能力.8、C【解析】

兩直線斜率相等,且截距不相等。【詳解】解析:由題意得,,解得或2,經(jīng)檢驗時兩直線重合,故.故選C.【點睛】本題考查兩直線平行,屬于基礎題.9、C【解析】

設出圓的半徑,表示出圓的面積和圓內(nèi)接正六邊形的面積,即可由幾何概型概率計算公式得解.【詳解】設圓的半徑為則圓的面積為圓內(nèi)接正六邊形的面積為由幾何概型概率可知,在圓內(nèi)任取一點,則此點取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為故選:C【點睛】本題考查了圓的面積及圓內(nèi)接正六邊形的面積求法,幾何概型概率的計算公式,屬于基礎題.10、A【解析】

已知第一個等式利用正弦定理化簡,再利用誘導公式及內(nèi)角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內(nèi)角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先根據(jù)三視圖還原幾何體,再計算體積即可.【詳解】由三視圖知:該幾何體是以底面是直角三角形,高為的三棱錐,直觀圖如圖所示:.故答案為:【點睛】本題主要考查三視圖還原直觀圖,同時考查了錐體的體積計算,屬于簡單題.12、【解析】試題分析:=,又,,代入可得8,所以考點:向量的數(shù)量積運算.13、【解析】

取,代入計算得到答案.【詳解】,當時故答案為【點睛】本題考查了前項和和通項的關系,取是解題的關鍵.14、262【解析】

根據(jù)條件列出不等式進行分析,確定公比、、的范圍后再綜合判斷.【詳解】設等比數(shù)列公比為,等差數(shù)列公差為,因為,,所以;又因為,分別為遞增的等差數(shù)列、等比數(shù)列,所以且;又時顯然不成立,所以,則,即;因為,,所以;因為,所以;由可知:,則,;又,所以,則有根據(jù)可解得符合條件的解有:或;當時,,解得不符,當時,解得,符合條件;則.【點睛】本題考查等差等比數(shù)列以及數(shù)列中項的存在性問題,難度較難.根據(jù)存在性將變量的范圍盡量縮小,通過不等式確定參變的取值范圍,然后再去確定符合的解,一定要注意帶回到原題中驗證,看是否滿足.15、23【解析】

直接利用數(shù)量積的坐標表示求解.【詳解】由題得.故答案為23【點睛】本題主要考查平面向量的數(shù)量積的計算,意在考查學生對該知識的理解掌握水平,屬于基礎題.16、三【解析】

根據(jù)三角函數(shù)在各個象限的符號,確定所在象限.【詳解】由于,所以為第三、第四象限角;由于,所以為第二、第三象限角.故為第三象限角.故答案為:三【點睛】本小題主要考查三角函數(shù)在各個象限的符號,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明:見解析;(Ⅱ)見解析.【解析】試題分析:(Ⅰ)根據(jù),知與確定一個平面,連接,得到,,從而平面,證得.(Ⅱ)設的中點為,連,在,中,由三角形中位線定理可得線線平行,證得平面平面,進一步得到平面.試題解析:(Ⅰ)證明:因,所以與確定平面.連接,因為為的中點,所以,同理可得.又,所以平面,因為平面,所以.(Ⅱ)設的中點為,連.在中,因為是的中點,所以,又,所以.在中,因為是的中點,所以,又,所以平面平面,因為平面,所以平面.【考點】平行關系,垂直關系【名師點睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問題.解答本題,關鍵在于能利用已知的直線與直線、直線與平面、平面與平面的位置關系,通過嚴密推理,給出規(guī)范的證明.本題能較好地考查考生的空間想象能力、邏輯推理能力及轉(zhuǎn)化與化歸思想等.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化簡整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【詳解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,則.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【點睛】本題考查了正弦定理、余弦定理、和差公式,考查了推理能力與計算能力,屬于中檔題.19、(1)或;(2)或.【解析】

(1)利用圓心在直線上設圓心坐標,利用相切列方程即可得解;(2)利用最大值為7確定圓,設點的坐標,找到到圓上點的最大距離列方程得解.【詳解】解:(1)設圓心的坐標為,因為圓與直線相切,所以,即,解得或,故圓的方程為:,或;(2)由最大值等于可知,若圓的方程為,則的最小值為,故不故符合題意;所以圓的方程為:,設,則,的最大值為:,得,解得或.故點的坐標為或.【點睛】此題考查了圓方程的求法,點到圓上點的距離最值等,屬于中檔題.20、(Ⅰ)(Ⅱ).【解析】

(Ⅰ)求解二次不等式從而求得集合A,利用指數(shù)函數(shù)的圖像求出集合B,再進行并集運算即可;(Ⅱ)依次求出,,即可寫出集合C的子集.【詳解】(Ⅰ)由,得,即有,于是.作出函數(shù)的圖象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【點睛】本題考查集合的基本運算,集合的子集,屬于基礎題.21、(1);(2)【解析】

(1)利用數(shù)量積公式結(jié)合二倍角公式,輔助角公式化簡函數(shù)解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論