版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知表示兩條不同的直線,表示三個不同的平面,給出下列四個命題:①,,,則;②,,,則;③,,,則;④,,,則其中正確的命題個數(shù)是()A.1 B.2 C.3 D.42.已知數(shù)列的前n項(xiàng)和為,且滿足,則()A.1 B. C. D.20163.已知命題,則命題的否定為()A. B.C. D.4.方程的解集是()A. B.C. D.5.在面積為S的△ABC的邊AB上任取一點(diǎn)P,則△PBC的面積大于的概率是()A. B. C. D.6.化簡=()A. B.C. D.7.已知直線的方程為,,則直線的傾斜角范圍()A. B.C. D.8.在中,已知、、分別是角、、的對邊,若,則的形狀為A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形9.若集合A={x|2≤x<4},?B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}10.已知一扇形的周長為,圓心角為,則該扇形的面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.12.已知等差數(shù)列的前n項(xiàng)和為,若,則的值為______________.13.?dāng)?shù)列滿足,當(dāng)時,,則是否存在不小于2的正整數(shù),使成立?若存在,則在橫線處直接填寫的值;若不存在,就填寫“不存在”_______.14.已知直線與圓交于兩點(diǎn),過分別作的垂線與軸交于兩點(diǎn),則_______.15.如圖,緝私艇在處發(fā)現(xiàn)走私船在方位角且距離為12海里的處正以每小時10海里的速度沿方位角的方向逃竄,緝私艇立即以每小時14海里的速度追擊,則緝私艇追上走私船所需要的時間是__________小時.16.若x、y滿足約束條件,則的最大值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(1分)設(shè)數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)數(shù)列{bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.18.在平面直角坐標(biāo)系中,已知,,動點(diǎn)滿足條件.(1)求點(diǎn)的軌跡的方程;(2)設(shè)點(diǎn)是點(diǎn)關(guān)于直線的對稱點(diǎn),問是否存在點(diǎn)同時滿足條件:①點(diǎn)在曲線上;②三點(diǎn)共線,若存在,求直線的方程;若不存在,請說明理由.19.已知,是第四象限角,求和的值.20.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.21.在△ABC中,AC=4,,.(Ⅰ)求的大?。唬á颍┤鬌為BC邊上一點(diǎn),,求DC的長度.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)線面和線線平行與垂直的性質(zhì)逐個判定即可.【詳解】對①,,,不一定有,故不一定成立.故①錯誤.對②,令為底面為直角三角形的直三棱柱的三個側(cè)面,且,,,但此時,故不一定成立.故②錯誤.對③,,,,則成立.故③正確.對④,若,,則,或,又,則.故④正確.綜上,③④正確.故選:B【點(diǎn)睛】本題主要考查了根據(jù)線面、線線平行與垂直的性質(zhì)判斷命題真假的問題,需要根據(jù)題意舉出反例或者根據(jù)判定定理判定,屬于中檔題.2、C【解析】
利用和關(guān)系得到數(shù)列通項(xiàng)公式,代入數(shù)據(jù)得到答案.【詳解】已知數(shù)列的前n項(xiàng)和為,且滿足,相減:取答案選C【點(diǎn)睛】本題考查了和關(guān)系,數(shù)列的通項(xiàng)公式,意在考查學(xué)生的計算能力.3、C【解析】
根據(jù)全稱命題的否定是特稱命題,可直接得出結(jié)果.【詳解】命題“”的否定是“”.故選C【點(diǎn)睛】本題主要考查全稱命題的否定,只需改量詞和結(jié)論即可,屬于基礎(chǔ)題型.4、C【解析】
把方程化為,結(jié)合正切函數(shù)的性質(zhì),即可求解方程的解,得到答案.【詳解】由題意,方程,可化為,解得,即方程的解集為.故答案為:C.【點(diǎn)睛】本題主要考查了三角函數(shù)的基本關(guān)系式,以及三角方程的求解,其中解答中熟記正切函數(shù)的性質(zhì),準(zhǔn)確求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】
記事件,基本事件是線段的長度,如下圖所示,作于,作于,根據(jù)三角形的面積關(guān)系得,再由三角形的相似性得,可得事件的幾何度量為線段的長度,可求得其概率.【詳解】記事件,基本事件是線段的長度,如下圖所示,作于,作于,因?yàn)椋瑒t有;化簡得:,因?yàn)?,則由三角形的相似性得,所以,事件的幾何度量為線段的長度,因?yàn)?,所以的面積大于的概率.故選:C【點(diǎn)睛】本題考查幾何概型,屬于基礎(chǔ)題.常有以下一些方面需考慮幾何概型,求解時需注意一些要點(diǎn).(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域。(3)幾何概型有兩個特點(diǎn):一是無限性,二是等可能性.基本事件可以抽象為點(diǎn),盡管這些點(diǎn)是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用"比例解法求解幾何概型的概率.6、D【解析】
根據(jù)向量的加法與減法的運(yùn)算法則,即可求解,得到答案.【詳解】由題意,根據(jù)向量的運(yùn)算法則,可得=++==,故選D.【點(diǎn)睛】本題主要考查了向量的加法與減法的運(yùn)算法則,其中解答中熟記向量的加法與減法的運(yùn)算法則,準(zhǔn)確化簡、運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.7、B【解析】
利用直線斜率與傾斜角的關(guān)系即可求解.【詳解】由直線的方程為,所以,即直線的斜率,由.所以,又直線的傾斜角的取值范圍為,由正切函數(shù)的性質(zhì)可得:直線的傾斜角為.故選:B【點(diǎn)睛】本題考查了直線的斜率與傾斜角之間的關(guān)系,同時考查了正弦函數(shù)的值域以及正切函數(shù)的性質(zhì),屬于基礎(chǔ)題.8、D【解析】
由,利用正弦定理可得,進(jìn)而可得sin2A=sin2B,由此可得結(jié)論.【詳解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形狀是等腰三角形或直角三角形故選D.【點(diǎn)睛】判斷三角形形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進(jìn)行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關(guān)系進(jìn)行判斷;(3)根據(jù)余弦定理確定一個內(nèi)角為鈍角進(jìn)而知其為鈍角三角形.9、B【解析】
根據(jù)交集定義計算.【詳解】由題意A∩B={x|3<x<4}.故選B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.10、C【解析】
根據(jù)題意設(shè)出扇形的弧長與半徑,通過扇形的周長與弧長公式即可求出扇形的弧長與半徑,進(jìn)而根據(jù)扇形的面積公式即可求解.【詳解】設(shè)扇形的弧長為,半徑為,扇形的圓心角的弧度數(shù)是.
則由題意可得:.
可得:,解得:,.可得:故選:C【點(diǎn)睛】本題主要考查扇形的周長與扇形的面積公式的應(yīng)用,以及考查學(xué)生的計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、(-∞,-1)∪(3,+∞)【解析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)12、1【解析】
由等差數(shù)列的性質(zhì)可得a7+a9+a11=3a9,而S17=17a9,故本題可解.【詳解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案為:1.【點(diǎn)睛】本題考查了等差數(shù)列的前n項(xiàng)和公式與等差數(shù)列性質(zhì)的綜合應(yīng)用,屬于基礎(chǔ)題.13、70【解析】
構(gòu)造數(shù)列,兩式與相減可得數(shù)列{}為等差數(shù)列,求出,讓=0即可求出.【詳解】設(shè)兩式相減得又?jǐn)?shù)列從第5項(xiàng)開始為等差數(shù)列,由已知易得均不為0所以當(dāng)n=70的時候成立,故答案填70.【點(diǎn)睛】如果遞推式中出現(xiàn)和的形式,比如,可以嘗試退項(xiàng)相減,即讓取后,兩式作差,和的部分因?yàn)橄鄿p而抵消,剩下的就好算了。14、【解析】
聯(lián)立直線的方程和圓的方程,求得兩點(diǎn)的坐標(biāo),根據(jù)點(diǎn)斜式求得直線的方程,進(jìn)而求得兩點(diǎn)的坐標(biāo),由此求得的長.【詳解】由解得,直線的斜率為,所以直線的斜率為,所以,令,得,所以.故答案為4【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查相互垂直的兩條直線斜率的關(guān)系,考查直線的點(diǎn)斜式方程,屬于中檔題.15、【解析】
設(shè)緝私艇追上走私船所需要的時間為小時,根據(jù)各自的速度表示出與,由,利用余弦定理列出關(guān)于的方程,求出方程的解即可得到的值.【詳解】解:設(shè)緝私艇上走私船所需要的時間為小時,則,,在中,,根據(jù)余弦定理知:,或(舍去),故緝私艇追上走私船所需要的時間為2小時.故答案為:.【點(diǎn)睛】本題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦、余弦定理是解本題的關(guān)鍵,屬于中檔題.16、18【解析】
先作出不等式組所表示的平面區(qū)域,再觀察圖像即可得解.【詳解】解:作出不等式組所表示的平面區(qū)域,如圖所示,由圖可得:目標(biāo)函數(shù)所在直線過點(diǎn)時,取最大值,即,故答案為:.【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,重點(diǎn)考查了作圖能力,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=2×【解析】試題分析:(1)設(shè)出等比數(shù)列{an}的公比q,利用條件a1=4,a3﹣a4(4)數(shù)列{an+bn}是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項(xiàng)相加得來的,所以可以采用拆項(xiàng)分組的方法,轉(zhuǎn)化為等差數(shù)列、等比數(shù)列的前n項(xiàng)和問題來解決.試題解析:解:(1)設(shè)數(shù)列{an}的公比為q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合題意,舍去,故q=3.∴an=4×3n﹣1;(4)∵數(shù)列{bn}是首項(xiàng)b1=1,公差d=4的等差數(shù)列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考點(diǎn):等差數(shù)列與等比數(shù)列.18、(1);(2)存在點(diǎn),直線方程為.【解析】
(1)設(shè),由題意根據(jù)兩點(diǎn)間的距離公式即可求解.(2)假設(shè)存在點(diǎn)滿足題意,此時直線的方程為:.設(shè),,根據(jù)題意可得,求出,再將直線與圓聯(lián)立求出,根據(jù)向量共線的坐標(biāo)表示以及點(diǎn)在圓上,求出即可求解.【詳解】(1)設(shè),由得,整理得:,所以點(diǎn)的軌跡方程為.(2)假設(shè)存在點(diǎn)滿足題意,此時直線的方程為:.設(shè),.因?yàn)榕c關(guān)于直線對稱,所以解得即.由,得,即.此時,,,所以,所以當(dāng)時,三點(diǎn)共線.若在曲線上,則,整理得,即,所以,即.綜上所述,存在點(diǎn),滿足條件①②,此時直線方程為.【點(diǎn)睛】本小題主要考查坐標(biāo)法、圓的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查抽象概括能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、整體運(yùn)算思想,化歸與轉(zhuǎn)化思想等.19、,【解析】
利用誘導(dǎo)公式可求的值,根據(jù)是第四象限角可求的值,最后根據(jù)三角函數(shù)的基本關(guān)系式可求的值,根據(jù)誘導(dǎo)公式及倍角公式可求的值.【詳解】,又是第四象限角,所以,所以,.【點(diǎn)睛】本題考查同角的三角函數(shù)的基本關(guān)系式、誘導(dǎo)公式以及二倍角公式,此題屬于基礎(chǔ)題.20、(1)θ(2)最小正周期為π;單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z【解析】
(1)計算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時θ的值;
(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調(diào)遞增區(qū)間.【詳解】(1)向量(cosx+sinx,1),(sinx,),函數(shù)=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3時,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函數(shù)f(x)=sin(2x)+2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度密封膠產(chǎn)品環(huán)保標(biāo)準(zhǔn)制定與執(zhí)行合同3篇
- 2025年度智能溫室大棚設(shè)施買賣合同范本4篇
- 2025年度園林除草項(xiàng)目承包合同范本4篇
- 2025年度現(xiàn)代農(nóng)業(yè)示范園區(qū)開發(fā)承包經(jīng)營合同范本3篇
- 2025年度智能穿戴設(shè)備開發(fā)框架授權(quán)許可合同3篇
- 2024面粉市場推廣與品牌代言合同3篇
- 2024版設(shè)備維修及日常保養(yǎng)合同合同一
- 2025年度床墊行業(yè)展會參展與合作協(xié)議3篇
- 2025年度玻璃行業(yè)研發(fā)成果轉(zhuǎn)化銷售合同3篇
- 2025年度新型城鎮(zhèn)化建設(shè)項(xiàng)目承包合同終止協(xié)議3篇
- 2025年湖北武漢工程大學(xué)招聘6人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 【數(shù) 學(xué)】2024-2025學(xué)年北師大版數(shù)學(xué)七年級上冊期末能力提升卷
- GB/T 26846-2024電動自行車用電動機(jī)和控制器的引出線及接插件
- 遼寧省沈陽市皇姑區(qū)2024-2025學(xué)年九年級上學(xué)期期末考試語文試題(含答案)
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 妊娠咳嗽的臨床特征
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2024年金融理財-擔(dān)保公司考試近5年真題附答案
- 泰山產(chǎn)業(yè)領(lǐng)軍人才申報書
- 高中語文古代文學(xué)課件:先秦文學(xué)
評論
0/150
提交評論