![復數(shù)概念教案3篇_第1頁](http://file4.renrendoc.com/view/e3a955d55b46cad79dc31e549b131f6b/e3a955d55b46cad79dc31e549b131f6b1.gif)
![復數(shù)概念教案3篇_第2頁](http://file4.renrendoc.com/view/e3a955d55b46cad79dc31e549b131f6b/e3a955d55b46cad79dc31e549b131f6b2.gif)
![復數(shù)概念教案3篇_第3頁](http://file4.renrendoc.com/view/e3a955d55b46cad79dc31e549b131f6b/e3a955d55b46cad79dc31e549b131f6b3.gif)
![復數(shù)概念教案3篇_第4頁](http://file4.renrendoc.com/view/e3a955d55b46cad79dc31e549b131f6b/e3a955d55b46cad79dc31e549b131f6b4.gif)
![復數(shù)概念教案3篇_第5頁](http://file4.renrendoc.com/view/e3a955d55b46cad79dc31e549b131f6b/e3a955d55b46cad79dc31e549b131f6b5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1/1復數(shù)的概念教案3篇復數(shù)的概念教案1教學目標
(1)掌握復數(shù)的有關概念,如虛數(shù)、純虛數(shù)、復數(shù)的實部與虛部、兩復數(shù)相等、復*面、實軸、虛軸、共軛復數(shù)、共軛虛數(shù)的概念。
(2)正確對復數(shù)進行分類,掌握數(shù)集之間的從屬關系;
(3)理解復數(shù)的幾何意義,初步掌握復數(shù)集c和復*面內所有的點所成的集合之間的一一對應關系。
(4)培養(yǎng)學生數(shù)形結合的數(shù)學思想,訓練學生條理的邏輯思維能力.
教學建議
(一)教材分析
1、知識結構
本節(jié)首先介紹了復數(shù)的有關概念,然后指出復數(shù)相等的充要條件,接著介紹了有關復數(shù)的幾何表示,最后指出了有關共軛復數(shù)的概念.
2、重點、難點分析
(1)正確復數(shù)的實部與虛部
對于復數(shù),實部是,虛部是.注意在說復數(shù)時,一定有,否則,不能說實部是,虛部是,復數(shù)的實部和虛部都是實數(shù)。
說明:對于復數(shù)的定義,特別要抓住這一標準形式以及是實數(shù)這一概念,這對于解有關復數(shù)的問題將有很大的幫助。
(2)正確地對復數(shù)進行分類,弄清數(shù)集之間的關系
分類要求不重復、不遺漏,同一級分類標準要統(tǒng)一。根據(jù)上述原則,復數(shù)集的分類如下:
注意分清復數(shù)分類中的界限:
①設,則為實數(shù)
②為虛數(shù)
③且。
④為純虛數(shù)且
(3)不能亂用復數(shù)相等的條件解題.用復數(shù)相等的條件要注意:
①化為復數(shù)的標準形式
②實部、虛部中的字母為實數(shù),即
(4)在講復數(shù)集與復*面內所有點所成的集合一一對應時,要注意:
①任何一個復數(shù)都可以由一個有序實數(shù)對()唯一確定.這就是說,復數(shù)的實質是有序實數(shù)對.一些書上就是把實數(shù)對()叫做復數(shù)的.
②復數(shù)用復*面內的點z()表示.復*面內的點z的坐標是(),而不是(),也就是說,復*面內的縱坐標軸上的單位長度是1,而不是.由于=0+1·,所以用復*面內的點(0,1)表示時,這點與原點的距離是1,等于縱軸上的單位長度.這就是說,當我們把縱軸上的點(0,1)標上虛數(shù)時,不能以為這一點到原點的距離就是虛數(shù)單位,或者就是縱軸的單位長度.
③當時,對任何,是純虛數(shù),所以縱軸上的點()()都是表示純虛數(shù).但當時,是實數(shù).所以,縱軸去掉原點后稱為虛軸.
由此可見,復*面(也叫高斯*面)與一般的坐標*面(也叫笛卡兒*面)的區(qū)別就是復*面的虛軸不包括原點,而一般坐標*面的原點是橫、縱坐標軸的公共點.
④復數(shù)z=a+bi中的z,書寫時小寫,復*面內點z(a,b)中的z,書寫時大寫.要學生注意.
(5)關于共軛復數(shù)的概念
設,則,即與的實部相等,虛部互為相反數(shù)(不能認為與或是共軛復數(shù)).
教師可以提一下當時的特殊情況,即實軸上的點關于實軸本身對稱,例如:5和5也是互為共軛復數(shù).當時,與互為共軛虛數(shù).可見,共軛虛數(shù)是共軛復數(shù)的特殊情行.
(6)復數(shù)能否比較大小
教材最后指出:“兩個復數(shù),如果不全是實數(shù),就不能比較它們的大小”,要注意:
①根據(jù)兩個復數(shù)相等地定義,可知在兩式中,只要有一個不成立,那么.兩個復數(shù),如果不全是實數(shù),只有相等與不等關系,而不能比較它們的大小.
②命題中的“不能比較它們的大小”的確切含義是指:“不論怎樣定義兩個復數(shù)間的一個關系‘復數(shù)的概念教案3篇擴展閱讀
復數(shù)的概念教案3篇(擴展1)
——函數(shù)概念教案10篇
函數(shù)概念教案1教學目標:
1.進一步理解用集合與對應的語言來刻畫的函數(shù)的概念,進一步理解函數(shù)的本質是數(shù)集之間的對應;
2.進一步熟悉與理解函數(shù)的定義域、值域的定義,會利用函數(shù)的定義域與對應法則判定有關函數(shù)是否為同一函數(shù);
3.通過教學,進一步培養(yǎng)學生由具體逐步過渡到符號化,代數(shù)式化,并能對以往學習過的知識進行理性化思考,對事物間的聯(lián)系的一種數(shù)學化的思考.
教學重點:
用對應來進一步刻畫函數(shù);求基本函數(shù)的定義域和值域.
教學過程:
一、問題情境
1.情境.
復述函數(shù)及函數(shù)的定義域的概念.
2.問題.
概念中集合A為函數(shù)的定義域,集合B的作用是什么呢?
二、學生活動
1.理解函數(shù)的值域的概念;
2.能利用觀察法求簡單函數(shù)的值域;
3.探求簡單的復合函數(shù)f(f(x))的定義域與值域.
三、數(shù)學建構
1.函數(shù)的值域:
(1)按照對應法則f,對于A中所有x的值的對應輸出值組成的集合稱之
為函數(shù)的值域;
(2)值域是集合B的子集.
2.xg(x)f(x)f(g(x)),其中g(x)的值域即為f(g(x))的定義域;
四、數(shù)*用
(一)例題.
例1已知函數(shù)f(x)=x2+2x,求f(-2),f(-1),f(0),f(1).
例2根據(jù)不同條件,分別求函數(shù)f(x)=(x1)2+1的值域.
(1)x∈{-1,0,1,2,3};
(2)x∈R;
(3)x∈[-1,3];
(4)x∈(-1,2];
(5)x∈(-1,1).
例3求下列函數(shù)的值域:
①=;②=.
例4已知函數(shù)f(x)與g(x)分別由下表給出:
x1234x1234
f(x)2341g(x)2143
分別求f(f(1)),f(g(2)),g(f(3)),g(g(4))的值.
(二)練習.
(1)求下列函數(shù)的值域:
①=2-x2;②=3-|x|.
(2)已知函數(shù)f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).
(3)已知函數(shù)f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發(fā)現(xiàn).
(4)已知函數(shù)=f(x)的定義域為[-1,2],求f(x)+f(-x)的定義域.
(5)已知f(x)的定義域為[-2,2],求f(2x),f(x2+1)的定義域.
五、回顧小結
函數(shù)的對應本質,函數(shù)的定義域與值域;
利用分解的思想研究復合函數(shù).
六、作業(yè)
課本P315,8,9.
函數(shù)概念教案2教學目標:
1、進一步理解的概念,能從簡單的實際事例中,抽象出關系,列出解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.
3、會求值,并體會自變量與值間的對應關系.
4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學使學生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
教學重點:了解的意義,會求自變量的取值范圍及求值.
教學難點:概念的抽象性.
教學過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的.
生活中有很多實例反映了關系,你能舉出一個,并指出式中的自變量與嗎?
1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數(shù)n(個)的關系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數(shù)n(個)與單價(a)元的關系.
解:1、y=30n
y是,n是自變量
2、,n是,a是自變量.
(二)講授新課
剛才所舉例子中的,都是利用數(shù)學式子即解析式表示的.這種用數(shù)學式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.
(1)(2)
(3)(4)
(5)(6)
分析:在(1)、(2)中,x取任意實數(shù),與都有意義.
(3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
第(5)小題,是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零.的被開方數(shù)是.
同理,第(6)小題也是二次根式,是被開方數(shù),
.
解:(1)全體實數(shù)
(2)全體實數(shù)
(3)
(4)且
(5)
(6)
小結:從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應使分母不為零;的解析式是二次根式時,自變量的取值應使被開方數(shù)大于、等于零.
注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關系.即2與1這兩個值x都不能取.
函數(shù)概念教案3教學目標:
1.通過現(xiàn)實生活中豐富的實例,讓學生了解函數(shù)概念產生的背景,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對應;
2.了解構成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會求一些簡單函數(shù)的定義域和值域;
3.通過教學,逐步培養(yǎng)學生由具體逐步過渡到符號化,代數(shù)式化,并能對以往學習過的知識進行理性化思考,對事物間的聯(lián)系的一種數(shù)學化的思考.
教學重點:
兩集合間用對應來描述函數(shù)的概念;求基本函數(shù)的定義域和值域.
教學過程:
一、問題情境
1.情境.
正方形的邊長為a,則正方形的周長為,面積為.
2.問題.
在初中,我們曾認識利用函數(shù)來描述兩個變量之間的關系,如何定義函數(shù)?常見的函數(shù)模型有哪些?
二、學生活動
1.復述初中所學函數(shù)的概念;
2.閱讀課本23頁的問題(1)、(2)、(3),并分別說出對其理解;
3.舉出生活中的實例,進一步說明函數(shù)的對應本質.
三、數(shù)學建構
1.用集合的語言分別闡述23頁的問題(1)、(2)、(3);
問題1某城市在某一天24小時內的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問題:
(1)這一變化過程中,有哪幾個變量?
(2)這幾個變量的范圍分別是多少?
問題2略.
問題3略(詳見23頁).
2.函數(shù):一般地,設A、B是兩個非空的數(shù)集,如果按某種對應法則f,對于集合A中的每一個元素x,在集合B中都有惟一的元素和它對應,這樣的對應叫做從A到B的一個函數(shù),通常記為=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數(shù)=f(x)的定義域.
(1)函數(shù)作為一種數(shù)學模型,主要用于刻畫兩個變量之間的關系;
(2)函數(shù)的本質是一種對應;
(3)對應法則f可以是一個數(shù)學表達式,也可是一個圖形或是一個表格
(4)對應是建立在A、B兩個非空的數(shù)集之間.可以是有限集,當然也就可以是單元集,如f(x)=2x,(x=0).
3.函數(shù)=f(x)的定義域:
(1)每一個函數(shù)都有它的定義域,定義域是函數(shù)的生命線;
(2)給定函數(shù)時要指明函數(shù)的定義域,對于用解析式表示的集合,如果沒
有指明定義域,那么就認為定義域為一切實數(shù).
四、數(shù)*用
例1.判斷下列對應是否為集合A到B的函數(shù):
(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;
(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;
(3)A={1,2,3,4,5},B=N,f:x→2x.
練習:判斷下列對應是否為函數(shù):
(1)x→2x,x≠0,x∈R;
(2)x→,這里2=x,x∈N,∈R。
例2求下列函數(shù)的定義域:
(1)f(x)=x—1;(2)g(x)=x+1+1x。
例3下列各組函數(shù)中,是否表示同一函數(shù)?為什么?
A.=x與=(x)2;B.=x2與=3x3;
C.=2x-1(x∈R)與=2t-1(t∈R);D.=x+2x-2與=x2-4
練習:課本26頁練習1~4,6.
五、回顧小結
1.生活中兩個相關變量的刻畫→函數(shù)→對應(A→B)
2.函數(shù)的對應本質;
3.函數(shù)的對應法則和定義域.
六、作業(yè):
課堂作業(yè):課本31頁習題2。1(1)第1,2兩題.
函數(shù)概念教案4各位領導老師:
大家好!
今天我說課的內容是函數(shù)的近代定義也就是函數(shù)的第一課時內容。
一、教材分析
1、教材的地位和作用:
函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿在中學數(shù)學的始終,概念是數(shù)學的基礎,概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中學生對函數(shù)概念理解的程度會直接影響數(shù)學其它知識的學習,所以函數(shù)的第一課時非常的重要。
2、教學目標及確立的依據(jù):
教學目標:
(1)教學知識目標:了解對應和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。
(2)能力訓練目標:通過教學培養(yǎng)學生的抽象概括能力、邏輯思維能力。
(3)德育滲透目標:使學生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。
教學目標確立的依據(jù):
函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿整個中學數(shù)學,如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學可幫助學生學好其他的數(shù)學內容。而掌握好函數(shù)的概念是學好函數(shù)的基石。
3、教學重點難點及確立的依據(jù):
教學重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。
教學難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。
重點難點確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的學生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。
二、教材的處理:
將映射的定義及類比手法的運用作為本課突破難點的關鍵。函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調動學生的學習熱情與參與意識,運用引導對比的手法,啟發(fā)引導學生進行有目的的反復比較幾個概念的異同,使學生真正對函數(shù)的概念有很準確的認識。
三、教學方法和學法
教學方法:講授為主,學生自主預習為輔。
依據(jù)是:因為以新的觀點認識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學生的思想和知識結構中打上深刻的烙印,為學生能學好后面的知識打下堅實的基礎。
學法:四、教學程序
一、課程導入
通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯(lián)系在一起?
二.新課講授:
(1)接著再通過幻燈片給出六組學生熟悉的數(shù)集的對應關系引導學生總結歸納它們的共同性質(一對一,多對一),進而給出映射的概念,表示符號f:A→B,及原像和像的定義。強調指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對應法則f。進一步引導學生總結判斷一個從A到B的對應是否為映射的關鍵是看A中的任意一個元素通過對應法則f在B中是否有唯一確定的元素與之對應。
(2)鞏固練習課本52頁第八題。
此練習能讓學生更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。
例1.給出學生初中學過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應關系,引導學生發(fā)現(xiàn)它們是特殊的映射進而給出函數(shù)的近代定義(設A、B是兩個非空集合,如果按照某種對應法則f,使得A中的任何一個元素在集合B中都有唯一的元素與之對應則這樣的對應叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對應法則f),并說明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對應的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使學生認識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓學生判斷的方式給出以下關于函數(shù)近代定義的注意事項:
2.函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3.f表示對應關系,在不同的函數(shù)中f的具體含義不一樣。
4.f(x)是一個符號,不表示f與x的乘積,而表示x經過f作用后的結果。
5.集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。
6.“f:A→B”表示一個函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。
三.講解例題
例1.問y=1(x∈A)是不是函數(shù)?
解:y=1可以化為y=0+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導學生從集合,映射的觀點認識函數(shù)的定義。
四.課時小結:
1.映射的定義。
2.函數(shù)的近代定義。
3.函數(shù)的三要素及符號的正確理解和應用。
4.函數(shù)近代定義的五大注意點。
五.課后作業(yè)及板書設計
書本P51習題2.1的1、2寫在書上3、4、5上交。
預習函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。
函數(shù)概念教案5一、教材分析
本節(jié)課選自《普通高中課程標準數(shù)學教科書必修1》(人教A版)《1.2.1函數(shù)的概念》共3課時,本節(jié)課是第1課時。
托馬斯說:“函數(shù)概念是近代數(shù)學思想之花”。生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。
函數(shù)是數(shù)學的重要的基礎概念之一,是高等數(shù)學重多學科
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年四年級英語上冊 Unit 5 I like those shoes Lesson 30說課稿 人教精通版(三起)
- 14小狗學叫 說課稿-2024-2025學年三年級上冊語文統(tǒng)編版
- Unit 1 My classroom Part B Read and write 大單元整體說課稿表格式-2024-2025學年人教PEP版英語四年級上冊
- 5《協(xié)商決定班級事務》第1課時(說課稿)-部編版道德與法治五年級上冊
- 出售供暖平房合同范本
- Unit 4 Then and now 單元整體(說課稿)-2023-2024學年人教PEP版英語六年級下冊
- 萬億存款合同范例
- 中介房產抵押合同范例
- 2024年01月江蘇無錫郵政儲蓄銀行招考大堂經理筆試歷年參考題庫附帶答案詳解
- 分銷合同范本附件模板
- 跨學科主題學習2-探索太空逐夢航天 說課稿-2024-2025學年粵人版地理七年級上冊
- 《電子技術應用》課程標準(含課程思政)
- 電力儲能用集裝箱技術規(guī)范
- 小學生雪豹課件
- 《課標教材分析》課件
- 基礎護理常規(guī)制度
- 針灸治療動眼神經麻痹
- 傾聽幼兒馬賽克方法培訓
- 設備日常維護及保養(yǎng)培訓
- 2024年建房四鄰協(xié)議范本
- FTTR-H 全光組網解決方案裝維理論考試復習試題
評論
0/150
提交評論