版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果在一次實驗中,測得x,y的四組數(shù)值分別是A1,3,B2,3.8,C3,5.2,D4,6,則A.y=x+1.9 B.C.y=0.95x+1.04 D.2.若點(m,n)在反比例函數(shù)y=的圖象上,其中m<0,則m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣23.已知圓和兩點,,.若圓上存在點,使得,則的最小值為()A. B. C. D.4.已知向量,且,則的值為()A.1 B.3 C.1或3 D.45.已知,,當(dāng)時,不等式恒成立,則的取值范圍是A. B. C. D.6.某班的60名同學(xué)已編號1,2,3,…,60,為了解該班同學(xué)的作業(yè)情況,老師收取了號碼能被5整除的12名同學(xué)的作業(yè)本,這里運用的抽樣方法是()A.簡單隨機抽樣 B.系統(tǒng)抽樣C.分層抽樣 D.抽簽法7.若直線過,,則該直線的斜率為A.2 B.3 C.4 D.58.若等差數(shù)列和的公差均為,則下列數(shù)列中不為等差數(shù)列的是()A.(為常數(shù)) B.C. D.9.在中,是的中點,,,相交于點,若,,則()A.1 B.2 C.3 D.410.若,則的坐標(biāo)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)=log2(x+1)的定義域為_____.12.若,且,則=_______.13.在200m高的山頂上,測得山下一塔頂與塔底的俯角分別是30°,60°,則塔高為14.已知向量,,,則_________.15.在平面直角坐標(biāo)系中,點到直線的距離為______.16.設(shè)變量x、y滿足約束條件,則目標(biāo)函數(shù)的最大值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)遠處一山頂D在西偏北的方向上,仰角為,行駛4km后到達B處,測得此山頂在西偏北的方向上.(1)求此山的高度(單位:km);(2)設(shè)汽車行駛過程中仰望山頂D的最大仰角為,求.18.如圖,矩形所在平面與以為直徑的圓所在平面垂直,為中點,是圓周上一點,且,,.(1)求異面直線與所成角的余弦值;(2)設(shè)點是線段上的點,且滿足,若直線平面,求實數(shù)的值.19.已知函數(shù)的最大值是1,其圖像經(jīng)過點(1)求的解析式;(2)已知且求的值。20.在ΔABC中,角A,B,C的對邊分別為a,b,c,且滿足3(b(1)求角B的大?。唬?)若ΔABC的面積為32,B是鈍角,求b21.設(shè)向量、滿足,,.(1)求的值;(2)若,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
求出樣本數(shù)據(jù)的中心(2.5,4.5),依次代入選項中的回歸方程.【詳解】∵x∴樣本數(shù)據(jù)的中心為(2.5,4.5),將它依次代四個選項,只有B符合,∴y與x之間的回歸直線方程是y=1.04x+1.9【點睛】本題的考點是回歸直線經(jīng)過樣本點的中心,而不是考查利用最小二乘法求回歸直線方程.2、C【解析】
根據(jù)題意可得出,再根據(jù)可得,將添上兩個負號運用基本不等式,即可求解.【詳解】由題意,可得,因為,所以,所以,當(dāng)且僅當(dāng),即時,等號成立,故選:C.【點睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、D【解析】
因為,所以點的軌跡為以為直徑的圓,故點是兩圓的交點,根據(jù)圓與圓的位置關(guān)系,即可求出.【詳解】根據(jù)可知,點的軌跡為以為直徑的圓,故點是圓和圓的交點,因此兩圓相切或相交,即,亦即.故的最小值為.故選:D.【點睛】本題主要考查圓與圓的位置關(guān)系的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.4、B【解析】
先求出,再利用向量垂直的坐標(biāo)表示得到關(guān)于的方程,從而求出.【詳解】因為,所以,因為,則,解得所以答案選B.【點睛】本題主要考查了平面向量的坐標(biāo)運算,以及向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.5、B【解析】
根據(jù)為定值,那么乘以后值不變,由基本不等式可消去x,y后,對得到的不等式因式分解,即可解得m的值.【詳解】因為,,,所以.因為不等式恒成立,所以,整理得,解得,即.【點睛】本題考查基本不等式,由為定值和已知不等式相乘來構(gòu)造基本不等式,最后含有根式的因式分解也是解題關(guān)鍵.6、B【解析】由題意,抽出的號碼是5,10,15,…,60,符合系統(tǒng)抽樣的特點:“等距抽樣”,故選B.7、A【解析】
由直線的斜率公式,即可求解,得到答案.【詳解】由題意,直線過點,,由斜率公式,可得斜率,故選A.【點睛】本題主要考查了斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、D【解析】
利用等差數(shù)列的定義對選項逐一進行判斷,可得出正確的選項.【詳解】數(shù)列和是公差均為的等差數(shù)列,則,,.對于A選項,,數(shù)列(為常數(shù))是等差數(shù)列;對于B選項,,數(shù)列是等差數(shù)列;對于C選項,,所以,數(shù)列是等差數(shù)列;對于D選項,,不是常數(shù),所以,數(shù)列不是等差數(shù)列.故選:D.【點睛】本題考查等差數(shù)列的定義和通項公式,注意等差數(shù)列定義的應(yīng)用,考查推理能力,屬于中等題.9、D【解析】由題意知,所以,解得,所以,故選D.10、C【解析】
,.故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、{x|x>﹣1}【解析】
利用對數(shù)的真數(shù)大于,即可得解.【詳解】函數(shù)的定義域為:,解得:,故答案為:.【點睛】本題主要考查對數(shù)函數(shù)定義域,考查學(xué)生對對數(shù)函數(shù)定義的理解,是基礎(chǔ)題.12、【解析】
由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,熟練掌握其基本關(guān)系是解題的關(guān)鍵.13、【解析】
試題分析:根據(jù)題意,設(shè)塔高為x,則可知,a表示的為塔與山之間的距離,可以解得塔高為.考點:解三角形的運用點評:主要是考查了解三角形中的余弦定理和正弦定理的運用,屬于中檔題.14、【解析】
根據(jù)向量平行交叉相乘相減等于0即可.【詳解】因為兩個向量平行,所以【點睛】本題主要考查了向量的平行,即,若則,屬于基礎(chǔ)題.15、2【解析】
利用點到直線的距離公式即可得到答案。【詳解】由點到直線的距離公式可知點到直線的距離故答案為2【點睛】本題主要考查點到直線的距離,熟練掌握公式是解題的關(guān)鍵,屬于基礎(chǔ)題。16、3【解析】
可通過限定條件作出對應(yīng)的平面區(qū)域圖,再根據(jù)目標(biāo)函數(shù)特點進行求值【詳解】可行域如圖所示;則可化為,由圖象可知,當(dāng)過點時,有最大值,則其最大值為:故答案為:3.【點睛】線性規(guī)劃問題關(guān)鍵是能正確畫出可行域,目標(biāo)函數(shù)可由幾何意義確定具體含義(最值或斜率)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)km.(2)【解析】
(1)設(shè)此山高,再根據(jù)三角形中三角函數(shù)的關(guān)系以及正弦定理求解即可.(2)由題意可知,當(dāng)點C到公路距離最小時,仰望山頂D的仰角達到最大,再計算到直線的距離即可.【詳解】解:(1)設(shè)此山高,則,在中,,,.根據(jù)正弦定理得,即,解得(km).(2)由題意可知,當(dāng)點C到公路距離最小時,仰望山頂D的仰角達到最大,所以過C作,垂足為E,連接DE.則,,,所以.【點睛】本題主要考查了解三角形在實際中的運用,需要根據(jù)題意找到對應(yīng)的直角三角形中的關(guān)系,或利用正弦定理求解.屬于中檔題.18、(1);(2)1【解析】
(1)取中點,連接,即為所求角。在中,易得MC,NC的長,MN可在直角三角形中求得。再用余弦定理易求得夾角。(2)連接,連接和交于點,連接,易得,所以為的中位線,所以為中點,所以的值為1?!驹斀狻浚?)取中點,連接因為為矩形,分別為中點,所以所以異面直線與所成角就是與所成的銳角或直角因為平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圓周上點,且,所以中,,由余弦定理可求得所以異面直線與所成角的余弦值為(2)連接,連接和交于點,連接因為直線平面,直線平面,平面平面所以矩形的對角線交點為中點所以為的中位線,所以為中點又,所以的值為1【點睛】(1)異面直線所成夾角一般是要平移到一個平面。(2)通過幾何關(guān)系確定未知點的位置,再求解線段長即可。19、(1)(2)【解析】本題(1)屬于基礎(chǔ)問題,根據(jù)題意首先可求得A,再將點M代入即可求得解析式;對于(2)可先將函數(shù)f(x)的解析式化簡,再帶入,利用兩角差的余弦公式可求解;(1)依題意知A=1,又圖像經(jīng)過點M∴,再由得即因此;(2),且,;20、(1)B=π3或2π【解析】
(1)由正弦定理和三角恒等變換的公式,化簡得3sin(A+B)=2sinBsin(2)由(1)和三角形的面積公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【詳解】(1)由題意,知3(b結(jié)合正弦定理得:3(即3sin又在△ABC中,sin(A+B)=sinC>0因為B∈(0,π)所以B=π3或(2)由三角形的面積公式,可得12又由sinB=32因為B是鈍角,所以B=2π由余弦定理得b2當(dāng)且僅當(dāng)a=c時取等號,所以b的最小值為6.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025農(nóng)村回遷房買賣合同(含稅費處理)
- 2025年度養(yǎng)豬場養(yǎng)殖環(huán)境優(yōu)化與改造合同3篇
- 二零二五年度借調(diào)人員工作培訓(xùn)與職業(yè)成長協(xié)議3篇
- 二零二五年度教育培訓(xùn)機構(gòu)教師聘用與教學(xué)質(zhì)量監(jiān)控合同2篇
- 二零二五年度子女對父母贍養(yǎng)與老年旅游服務(wù)合同3篇
- 二零二五年度國際能源資源勘探開發(fā)合同3篇
- 2025年度養(yǎng)豬場產(chǎn)業(yè)鏈上下游供應(yīng)鏈合作合同3篇
- 二零二五年度企業(yè)勞動合同解除與員工離職經(jīng)濟補償及離職證明協(xié)議3篇
- 2025年度口腔醫(yī)院與醫(yī)療器械制造商戰(zhàn)略合作合同3篇
- 2025年度美國大學(xué)本科預(yù)科班入學(xué)合同3篇
- 醫(yī)療廢物轉(zhuǎn)移實施方案
- 工程師個人年終總結(jié)
- GB 17353-2024摩托車和輕便摩托車防盜裝置
- 學(xué)校膳食管理委員會工作制度和職責(zé)
- 房租收條格式(3篇)
- 期末試卷(試題)2024-2025學(xué)年培智生活語文二年級上冊
- 2024伊利在線測評題
- 紅色簡約中國英雄人物李大釗課件
- 小學(xué)師德考評細則
- 軟件定義網(wǎng)絡(luò)(SDN)實戰(zhàn)教程課件
- 上海市住院醫(yī)師規(guī)范化培訓(xùn)公共科目考試題庫-重點傳染病防治知識
評論
0/150
提交評論