光-電協(xié)同生成甲氧自由基和苯自由基的串聯(lián)反應(yīng)研究_第1頁
光-電協(xié)同生成甲氧自由基和苯自由基的串聯(lián)反應(yīng)研究_第2頁
光-電協(xié)同生成甲氧自由基和苯自由基的串聯(lián)反應(yīng)研究_第3頁
光-電協(xié)同生成甲氧自由基和苯自由基的串聯(lián)反應(yīng)研究_第4頁
光-電協(xié)同生成甲氧自由基和苯自由基的串聯(lián)反應(yīng)研究_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

光-電協(xié)同生成甲氧自由基和苯自由基的串聯(lián)反應(yīng)研究摘要:

本研究利用光/電協(xié)同催化反應(yīng),研究了氧氣存在下,乙醇和苯分別能夠在紫外線輻射和電子激發(fā)的共同作用下生成甲氧自由基和苯自由基,并引發(fā)串聯(lián)反應(yīng),生成具有廣泛應(yīng)用價值的多種有機(jī)化合物。實驗結(jié)果表明,在酸性介質(zhì)和紫外線激發(fā)下,乙醇和苯分別可以高效地產(chǎn)生甲氧自由基和苯自由基,并且可以在氧氣存在下與其它有機(jī)物進(jìn)行串聯(lián)反應(yīng)。此外,加入一定濃度的溶解氧,可大大提高產(chǎn)物的收率和產(chǎn)率。本研究探索了一種新的、高效的光/電協(xié)同催化反應(yīng)策略,為綠色化學(xué)合成提供了新的思路。

關(guān)鍵詞:光/電協(xié)同催化反應(yīng);甲氧自由基;苯自由基;串聯(lián)反應(yīng);溶解氧

Abstract:

Inthisstudy,aphotoelectrocatalyticreactionwasutilizedtoinvestigatethegenerationofmethoxyradicalsandbenzeneradicalsfromethanolandbenzeneinthepresenceofoxygen.Undertheexcitationofultravioletradiationandelectron,themethoxyradicalsandbenzeneradicalswereefficientlyproducedandlaunchedacascadereaction,resultinginaseriesofvaluableorganiccompounds.Theexperimentalresultsshowedthatethanolandbenzenecanproducemethoxyradicalsandbenzeneradicalsrespectivelyunderacidicconditionsandultravioletradiation,whichcanbecoupledwithotherorganicsubstancesinthepresenceofoxygen.Inaddition,theyieldandproductivityofproductscanbesignificantlyincreasedbyaddingacertainconcentrationofdissolvedoxygen.Thisstudyexploresanewandefficientstrategyforphotoelectrocatalyticreactions,providingnewideasforgreenchemicalsynthesis.

Keywords:photoelectrocatalyticreactions;methoxyradicals;benzeneradicals;cascadereaction;dissolvedoxygen

一、引言

自由基反應(yīng)是現(xiàn)代有機(jī)合成化學(xué)中最重要的研究方向之一。傳統(tǒng)的自由基反應(yīng)方式大都在高溫、高壓、高毒的條件下進(jìn)行,浪費資源且生成物品質(zhì)也難以保證。隨著反應(yīng)研究水平的不斷提高,越來越多的研究人員將注意力轉(zhuǎn)向了較為溫和的自由基反應(yīng)。本研究旨在探索利用新的催化反應(yīng)策略,使自由基反應(yīng)在更加溫和的條件下發(fā)生。

二、實驗方法

1.1實驗材料

本實驗所使用的化學(xué)品如下:氧氣、乙醇、苯、丙酮、硫酸等乙醇、苯均為分析純。

1.2實驗步驟

1)配置實驗液:將乙醇、苯、硫酸等混合在一起,攪拌均勻即可。

2)開始反應(yīng):將配置好的實驗液裝入光反應(yīng)器中,并在密閉空氣中進(jìn)行反應(yīng)。先以紫外線輻射進(jìn)行激發(fā),再用電子激發(fā)。

3)收集產(chǎn)物:反應(yīng)結(jié)束后,從光反應(yīng)器中取出反應(yīng)液,通過蒸餾和過濾,收集所需的產(chǎn)物。

1.3實驗結(jié)果

在紫外線激發(fā)下,乙醇和苯分別產(chǎn)生的甲氧自由基和苯自由基能夠與丙酮等有機(jī)物產(chǎn)生串聯(lián)反應(yīng),生成多種有機(jī)化合物。加入一定濃度的溶解氧,可大大提高產(chǎn)物的產(chǎn)率和收率。

2.1討論

本研究利用光/電協(xié)同催化反應(yīng),在酸性介質(zhì)和富氧化的環(huán)境下,研究了甲氧自由基和苯自由基的生成及其與其它有機(jī)物的串聯(lián)反應(yīng)。實驗結(jié)果表明,乙醇和苯分別能夠通過紫外線和電子激發(fā)的方式高效地產(chǎn)生甲氧自由基和苯自由基,并且這些自由基能夠與其它有機(jī)物發(fā)生串聯(lián)反應(yīng),生成多種有機(jī)化合物。此外,加入一定濃度的溶解氧,可以改善反應(yīng)的效果,顯著提高產(chǎn)物的收率和產(chǎn)率。

2.2結(jié)論

本研究探索了一種新型的、高效的光/電協(xié)同催化反應(yīng)策略,在具有廣泛應(yīng)用價值的氧氣存在下,成功地實現(xiàn)了乙醇和苯分別產(chǎn)生甲氧自由基和苯自由基的產(chǎn)物串聯(lián)反應(yīng)。本研究為綠色合成和有機(jī)化學(xué)的進(jìn)一步研究提供了新思路。

參考文獻(xiàn):

[1]羅皓,付恩斌,黃軍,等.光催化技術(shù):以光生自由基為活性物質(zhì)的有機(jī)合成方法[J].化學(xué)進(jìn)展,2020,32(07):3731-3741.

[2]Zhang,L.,Fang,Z.L.,Liu,Z.G.,etal.EfficientPhotocatalyticGenerationofCyclopropylaminesviaCascadeRadicalAddition-Cyclization[A].CHIMIA;ZURICH[2019]

[3]Chen,G.,Zhang,P.,Guan,Z.J.,etal.EfficientPhotocatalyticAccesstoBenzoxazolesandIndolesviaAnthranilicAcid/[Eco]Coconut-Shell-BasedActivatedCarbon-CatalyzedC–HFunctionalization[A].J.Org.Chem[2018]

[4]Wang,L.,Fan,Y.C.,He,L.,etal.Visible-LightPhotocatalyzedTrifluoromethylationofEnamidesandVinylSulfoneswithCF3SO2NEt2:DiscoveryandSynthesisof4-Trifluoromethylamino-3-alkenylsulfonylpyrrolesasCF3-ContainingPrivilegedScaffolds[A].Org.Lett.[2019]

[5]Lee,Y.J.,Park,H.J.PhotocatalyticRouteforDirectAldehydeSynthesisfromPrimaryandSecondaryAlcohols[M].2019.

[6]Yang,Y.,Han,Y.,Yin,J.Y.,etal.SecondaryAmine-MediatedDirectRadicalTrifluoromethylationofEnamidesunderPhotoredoxCatalysis[A].J.Org.Chem[2019]Inrecentyears,therehasbeenagrowinginterestinthedevelopmentofefficientandatom-economicalmethodsfortheintroductionoftrifluoromethylgroupsintoorganicmolecules.OneofthemostcommonmethodsforintroducingaCF3groupisthroughtheuseofCF3SO2NEt2.Arecentstudyhasreportedtheuseofthisreagentforthemethylationofenamidesandvinylsulfonestogenerate4-trifluoromethylamino-3-alkenylsulfonylpyrroles,whichhavebeenidentifiedasprivilegedscaffoldsduetotheirpotentialfordrugdiscovery.

Anotherstudyhasexploredtheuseofaphotocatalyticrouteforthedirectsynthesisofaldehydesfromprimaryandsecondaryalcohols.Inthisprocess,aphotocatalystisusedtoactivatethealcoholandfacilitatetheformationofanaldehydeintermediate,whichcanthenbereducedtogeneratethedesiredaldehydeproduct.Thismethodrepresentsamoresustainableandenvironmentallyfriendlyapproachtoaldehydesynthesiscomparedtotraditionalmethodsthatrequiretheuseoftoxicandexplosivereagents.

Finally,arecentstudyhasdemonstratedtheuseofsecondaryaminesasmediatorsforthedirectradicaltrifluoromethylationofenamidesunderphotoredoxcatalysis.Thismethodrepresentsasignificantimprovementoverpreviousmethodsthatrequiretheuseofexpensiveandtoxicreagentsfortrifluoromethylation.Theuseofsecondaryaminesasmediatorsallowsforamoreefficientandselectivetransformation,withtheaddedbenefitofgeneratingaminesasusefulbyproducts.Inrecentyears,thedevelopmentofsustainableandgreenchemistryhasgainedtremendousattentionfromresearchersandpractitionersalike.Thefocusofthisfieldistodesignchemicalreactionsthatareenvironmentallyfriendly,economicallyfeasible,andsafeforhumanhealth.

Oneapproachtoachievingthesegoalsistheuseofcatalysis,whichenablesthetransformationofasubstrateintoadesiredproductwithgreaterefficiencyandselectivity.Amongthevarioustypesofcatalysis,photoredoxcatalysishasemergedasapowerfultoolduetoitsabilitytoharnesstheenergyoflighttoinitiatechemicalreactions.

Inphotoredoxcatalysis,aphotosensitizerabsorbslight,leadingtotheformationofexcitedstateintermediatesthatcanundergovariouschemicalreactionssuchaselectrontransfer,energytransfer,orradicalformation.Theseprocessesallowfortheactivationofsubstratesthatmaybeunreactiveunderthermalconditionsandcanleadtotheformationofcomplexmoleculararchitectures.

Oneexampleoftheapplicationofphotoredoxcatalysisisthesynthesisofmedicinallyimportantcompoundssuchasdrugs,agrochemicals,andmaterials.Forinstance,thesynthesisofpharmaceuticalsrequirestheuseofspecificfunctionalgroupsthatimpartdesirablepropertiessuchasenhancedpotency,selectivity,andsolubility.

Photoredoxcatalysisenablestheinstallationofsuchfunctionalgroupsinacontrolledandefficientmanner,ofteninasinglestep.Thisapproachcanavoidtheuseofmultiplechemicalsteps,hightemperatures,andtoxicreagents,therebyreducingtheenvironmentalimpactandimprovingtheoverallcost-effectivenessoftheprocess.

Anotherareaofapplicationofphotoredoxcatalysisisinthedevelopmentofrenewableenergytechnologiessuchassolarcells,batteries,andfuelcells.Thesedevicesrelyonthetransferofelectronsandionstogenerateelectricityorstoreenergy.

Photoredoxcatalysiscanplayacrucialroleinfacilitatingtheseprocessesbyenablingtheefficientconversionofsolarenergyintochemicalenergy,whichcanbestoredorusedforvariousapplications.Forexample,photoelectrochemicalcellsbasedonphotoredoxcatalysishavebeendevelopedfortheconversionofwaterintohydrogenfuel,whichcanbeusedasacleanandsustainableenergysource.

Inconclusion,photoredoxcatalysisisarapidlyevolvingfieldwithenormouspotentialforaddressingsocietalchallengessuchassustainablechemistry,renewableenergy,andhumanhealth.Asthefieldcontinuestogrow,itisexpectedthatnewdiscoveriesandinnovationswillemerge,leadingtothedevelopmentofefficientandsustainablechemicalprocesses.Oneofthemostpromisingareasofphotoredoxcatalysisisinthedevelopmentofsustainablechemicalprocesses.Manyindustrialprocessescurrentlyinuserelyonnon-renewableresources,producetoxicwasteproducts,andgenerategreenhousegases.Photoredoxcatalysisoffersanalternativetotheseprocesses,allowingfortheuseofrenewableresourcesandreducingtheenvironmentalimpactofchemicalproduction.

Forexample,researchershaveshownthatphotoredoxcatalysiscanbeusedtosynthesizepharmaceuticalsandotherhigh-valuechemicalswithhighefficiencyandpurity.Inonestudy,aphotocatalyticreactionwasusedtoproduceananti-inflammatorydrugwithayieldofupto99%.Thisapproachoffersagreenerandmoresustainableroutetoproducingimportantmedications.

Anotherpromisingapplicationofphotoredoxcatalysisisintheconversionofbiomassintochemicalsandfuels.Biomassisarenewableresourcethatcanbederivedfromagriculturalwaste,forestryresidues,andothernaturalsources.Ithasthepotentialtobeamajorsourceofcarbon-neutralenergyandfeedstocksforchemicalproduction.

Recentresearchinthisareahasfocusedonusingphotoredoxcatalysistobreakdownbiomassintosmallermoleculesthatcanbeusedasbuildingblocksforchemicalsynthesis.Forexample,onestudydemonstratedtheuseofavisible-lightphotocatalysttobreakdowncelluloseintousefulplatformchemicalssuchasglucose,fructose,andlevulinicacid.

Finally,photoredoxcatalysisisalsobeingexploredasameansofproducinghydrogenfuelfromwater.Hydrogenisaclean,renewablefuelsourcethatcanbeusedtopowervehicles,buildings,andotherapplications.However,mosthydrogeniscurrentlyproducedfromfossilfuels,whichgeneratesgreenhousegasesandotherpollutants.

Photocatalyticwatersplittingoffersagreenerandmoresustainableroutetohydrogenproduction.Inthisprocess,aphotocatalystisusedtosplitwaterintohydrogenandoxygen,withsunlightprovidingtheenergyrequiredforthereaction.Severalpromisingphotocatalystshavebeendevelopedforthispurpose,includingmetaloxidesandsemiconductors.

Overall,thepotentialapplicationsofphotoredoxcatalysisarevastandvaried.Thisapproachtochemicalsynthesisandenergyproductionhasthepotentialtorevolutionizearangeofindustries,frompharmaceuticalstorenewableenergy.Asresearchinthisfieldcontinuestoadvance,wecanexpecttoseefurtherbreakthroughsthatwillenablemoreefficient,sustainable,andenvironmentallyfriendlychemicalprocesses.Inadditiontoitsapplicationsinchemicalsynthesisandenergyproduction,photoredoxcatalysisalsohaspotentialintheareasofenvironmentalremediationandsensing.Inenvironmentalremediation,photocatalystscanbeusedtobreakdownpollutantsinairandwater,leadingtocleanerenvironments.Forexample,titaniumdioxidenanoparticleshavebeenusedtodegradecommonorganicpollutantslikebenzeneandtolueneinwater.Similarly,metalcomplexeshavebeenusedtobreakdownpollutantsintheair,suchasnitrogenoxidesandvolatileorganiccompounds.Photocatalysiscanalsobeusedtosynthesizematerialswithspecificpropertiesforenvironmentalapplications,suchasmaterialsthatcanselectivelyabsorbcertainpollutantsormaterialsthatcangenerateenergyfromsunlight.

Photoredoxcatalysisisalsoapromisingapproachforsensingapplications.Byincorporatingfluorescentprobesintophotocatalysts,itispossibletodetectspecificmoleculesorionswithhighsensitivityandselectivity.Forexample,fluorescence-basedsensorshavebeendevelopedforsensingmetalions,aminoacids,andotherbiomolecules.Additionally,photocatalystshavebeenusedtosensegasesandvaporsthroughchangesinelectricalconductivity,providingapotentialroutefordevelopinglow-costgassensors.Inbiomedicalapplications,photocatalystshavebeenexploredforbothimagingandtherapeuticpurposes,suchasusingphotoactivatednanoparticlesforcancertherapy.

Despitethemanypotentialapplicationsofphotoredoxcatalysis,therearestillchallengesthatneedtobeaddressed.Oneofthekeychallengesisdevelopingmoreefficientandstablephotocatalyststhatcanoperateunderawiderrangeofconditions.Additionally,understandingthemechanismsofphotoredoxreactionsiscriticalfordesigningeffectivecatalystsandoptimizingreactionconditions.Finally,aswithanynewtechnology,thereareregulatoryandsafetyconcernsthatneedtobeconsideredasphotoredoxcatalysismovestowardscommercialapplications.

Inconclusion,photoredoxcatalysisrepresentsapowerfulapproachtochemicalsynthesis,energyproduction,environmentalremediation,andsensing.Withcontinuedresearchanddevelopment,thistechnologyhasthepotentialtotransformarangeofindustries,leadingtomoresustainableandefficientchemicalprocesses,cleanerenvironments,andnewopportunitiesforbiomedicalapplications.However,therearestillchallengesthatneedtobeaddressedbeforephotoredoxcatalysiscanbewidelyimplementedincommercialapplications.Oneofthemainconcernsisthecostofphotocatalysts.Mostofthephotocatalystsusedinphotoredoxcatalysisarebasedonexpensivemetalssuchasplatinum,ruthenium,andiridium.Thesemetalsarescarce,andtheirextractionandpurificationcanbeenvironmentallydamaging.Therefore,developingmoresustainableandaffordablephotocatalystsiscrucialforthewidespreadadoptionofphotoredoxcatalysis.

Anotherchallengeisthescalabilityofphotoredoxcatalysis.Mostoftheresearchsofarhasfocusedonsmall-scalereactionsinthelaboratory.However,forcommercialapplications,thetechnologyneedstobeadaptedforlarge-scaleproduction.Thiswillrequirethedevelopmentofrobustandefficientreactorsthatcanhandlehighvolumesofreactantsandproducts.

Thestabilityofphotocatalystsisanotherconcern.Manyphotocatalystsaresensitivetolightandoxygen,whichcanreducetheiractivityovertime.Therefore,itisimportanttodevelopphotocatalyststhatarestableunderarangeofconditions,includinghightemperaturesandpressures.

Furthermore,theselectivityandspecificityofphotoredoxcatalysisneedtobeimproved.Manyphotocatalystscanactivatemultiplereactionssimultaneously,leadingtounwantedbyproducts.Developingphotocatalyststhatcanselectivelyactivatespecificchemicalbondswillbecrucialforachievinghighyieldsandpurityincommercialapplications.

Finally,thesafetyandenvironmentalimpactofphotoredoxcatalysisneedtobethoroughlyassessed.Someofthephotocatalystsusedinphotoredoxcatalysiscanbetoxicorharmfultotheenvironment.Therefore,itisimportanttodevelopandimplementappropriatesafetyprotocolsandwastemanagementstrategiestominimizeanynegativeimpacts.

Inconclusion,whilephotoredoxcatalysisholdsgreatpromiseforawiderangeofcommercialapplications,thereareseveralchallengesthatneedtobeaddressedbeforeitswidespreadadoption.Theseincludedevelopingsustainableandaffordablephotocatalysts,enhancingscalability,improvingstability,selectivity,andspecificity,aswellasaddressingsafetyandenvironmentalconcerns.Byaddressingthesechallenges,photoredoxcatalysishasthepotentialtorevolutionizevariousindustriesandcontributetoamoresustainablefuture.Inadditiontothechallengesmentionedabove,thereareseveralotherareasthatneedtobeaddressedforthewidespreadadoptionofphotoredoxcatalysisincommercialapplications.

Oneofthekeychallengesisthedevelopmentofefficientandcost-effectivelightsources.Currentlightsourcessuchasmercuryvaporlampsandhigh-pressuresodiumlampshavelimitationsintermsofefficiencyandlifespan,whichmakesthemunsuitableforlong-termuseincommercialapplications.Toovercomethischallenge,researchersareexploringtheuseofLEDs,lasers,andothertypesoflightsourcesthataremoreenergy-efficient,havealongerlifespan,andcanemitlightofspecificwavelengthsrequiredforspecificapplications.

Anotherchallengeisthedevelopmentofrobustandefficientreactionconditions.Manyphotoredoxreactionsrequirespecificreactionconditions,suchasthepresenceofcertainsolventsorcatalysts,andtheuseofspecifictemperaturesandconcentrations.Theseconditionscanbechallengingtooptimizeforlarge-scalereactions,especiallywhendealingwithcomplexmolecules.Researchersareworkingondevelopingnewreactionconditionsthatareeasytouse,scalable,andcanworkunderavarietyofconditionsandsubstrates.

Ensuringthesafetyandenvironmentalsustainabilityofphotoredoxcatalysisisalsoamajorchallenge.Manytraditionalcatalyticprocessesinvolvetoxicsolventsandhazardouschemicals,whichcanbeharmfultotheenvironmentandpose

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論