版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1
arXiv:2108.02497v3[cs.LG]9Feb2023
Howtoavoidmachinelearningpitfalls:aguideforacademicresearchers
MichaelA.Lones*
Abstract
Thisdocumentisaconciseoutlineofsomeofthecommonmistakesthatoccurwhen
usingmachinelearning,andwhatcanbedonetoavoidthem.Whilstitshouldbeaccessibletoanyonewithabasicunderstandingofmachinelearningtechniques,itwasoriginallywrittenforresearchstudents,andfocusesonissuesthatareofpartic-ularconcernwithinacademicresearch,suchastheneedtodorigorouscomparisonsandreachvalidconclusions.Itcovers?vestagesofthemachinelearningprocess:whattodobeforemodelbuilding,howtoreliablybuildmodels,howtorobustlyevaluatemodels,howtocomparemodelsfairly,andhowtoreportresults.
1Introduction
It’seasytomakemistakeswhenapplyingmachinelearning(ML),andthesemistakescanresultinMLmodelsthatfailtoworkasexpectedwhenappliedtodatanotseenduringtrainingandtesting[
Liaoetal.
,
2021
].Thisisaproblemforpractitioners,sinceitleadstothefailureofMLprojects.However,itisalsoaproblemforsociety,sinceiterodestrustinthe?ndingsandproductsofML[
Gibney
,
2022
].Thisguideaimstohelpnewcomersavoidsomeofthesemistakes.It’swrittenbyanacademic,andfocusesonlessonslearntwhilstdoingMLresearchinacademia.Whilstprimarilyaimedatstudentsandscienti?cresearchers,itshouldbeaccessibletoanyonegettingstartedinML,andonlyassumesabasicknowledgeofMLtechniques.However,unlikesimilarguidesaimedatamoregeneralaudience,itincludestopicsthatareofaparticularconcerntoacademia,suchastheneedtorigorouslyevaluateandcomparemodelsinordertogetworkpublished.Tomakeitmorereadable,theguidanceiswritteninformally,inaDosandDon’tsstyle.It’snotintendedtobeexhaustive,andreferences(withpublicly-accessibleURLswhereavailable)areprovidedforfurtherreading.Sinceitdoesn’tcoverissuesspeci?ctoparticularacademicsubjects,it’srecommendedyoualsoconsultsubject-speci?cguidancewhereavailable(e.g.
Stevensetal.
[
2020]
formedicine).Feedbackiswelcome,anditisexpectedthatthisdocumentwillevolveovertime.Forthisreason,ifyouciteit,pleaseincludethearXivversionnumber(currentlyv3).
*SchoolofMathematicalandComputerSciences,Heriot-WattUniversity,Edinburgh,Scotland,UK,Email:
m.lones@hw.ac.uk
,Web:
http://www.macs.hw.ac.uk/~ml355
.
2
Contents
1Introduction
1
2Beforeyoustarttobuildmodels
3
2.1Dotakethetimetounderstandyourdata
3
2.2Don’tlookatallyourdata
3
2.3Domakesureyouhaveenoughdata
3
2.4Dotalktodomainexperts
4
2.5Dosurveytheliterature
4
2.6Dothinkabouthowyourmodelwillbedeployed
5
3Howtoreliablybuildmodels
5
3.1Don’tallowtestdatatoleakintothetrainingprocess
5
3.2Dotryoutarangeofdi?erentmodels
6
3.3Don’tuseinappropriatemodels
7
3.4Dokeepupwithrecentdevelopmentsindeeplearning
8
3.5Don’tassumedeeplearningwillbethebestapproach
8
3.6Dooptimiseyourmodel’shyperparameters
9
3.7Dobecarefulwhereyouoptimisehyperparametersandselectfeatures
9
3.8Doavoidlearningspuriouscorrelations
11
4Howtorobustlyevaluatemodels
11
4.1Douseanappropriatetestset
11
4.2Don’tdodataaugmentationbeforesplittingyourdata
12
4.3Douseavalidationset
12
4.4Doevaluateamodelmultipletimes
12
4.5Dosavesomedatatoevaluateyour?nalmodelinstance
14
4.6Don’tuseaccuracywithimbalanceddatasets
14
4.7Don’tignoretemporaldependenciesintimeseriesdata
15
5Howtocomparemodelsfairly
16
5.1Don’tassumeabiggernumbermeansabettermodel
16
5.2Dousestatisticaltestswhencomparingmodels
16
5.3Docorrectformultiplecomparisons
17
5.4Don’talwaysbelieveresultsfromcommunitybenchmarks
17
5.5Doconsidercombinationsofmodels
17
6Howtoreportyourresults
18
6.1Dobetransparent
18
6.2Doreportperformanceinmultipleways
19
6.3Don’tgeneralisebeyondthedata
19
6.4Dobecarefulwhenreportingstatisticalsigni?cance
19
6.5Dolookatyourmodels
20
7Finalthoughts
20
8Acknowledgements
21
9Changes
21
3
2Beforeyoustarttobuildmodels
It’snormaltowanttorushintotrainingandevaluatingmodels,butit’simportanttotakethetimetothinkaboutthegoalsofaproject,tofullyunderstandthedatathatwillbeusedtosupportthesegoals,toconsideranylimitationsofthedatathatneedtobeaddressed,andtounderstandwhat’salreadybeendoneinyour?eld.Ifyoudon’tdothesethings,thenyoumayendupwithresultsthatarehardtopublish,ormodelsthatarenotappropriatefortheirintendedpurpose.
2.1Dotakethetimetounderstandyourdata
Eventuallyyouwillwanttopublishyourwork.Thisisaloteasiertodoifyourdataisfromareliablesource,hasbeencollectedusingareliablemethodology,andisofgoodquality.Forinstance,ifyouareusingdatacollectedfromaninternetresource,makesureyouknowwhereitcamefrom.Isitdescribedinapaper?Ifso,takealookatthepaper;makesureitwaspublishedsomewherereputable,andcheckwhethertheauthorsmentionanylimitationsofthedata.Donotassumethat,becauseadatasethasbeenusedbyanumberofpapers,itisofgoodquality—sometimesdataisusedjustbecauseitiseasytogetholdof,andsomewidelyuseddatasetsareknowntohavesigni?cantlimitations(see
Paulladaetal.
[
2020
]foradiscussionofthis).Ifyoutrainyourmodelusingbaddata,thenyouwillmostlikelygenerateabadmodel:aprocessknownasgarbageingarbageout.So,alwaysbeginbymakingsureyourdatamakessense.Dosomeexploratorydataanalysis(see
Cox
[
2017
]forsuggestions).Lookformissingorinconsistentrecords.Itismucheasiertodothisnow,beforeyoutrainamodel,ratherthanlater,whenyou’retryingtoexplaintoreviewerswhyyouusedbaddata.
2.2Don’tlookatallyourdata
Asyoulookatdata,itisquitelikelythatyouwillspotpatternsandmakeinsightsthatguideyourmodelling.Thisisanothergoodreasontolookatdata.However,itisimportantthatyoudonotmakeuntestableassumptionsthatwilllaterfeedintoyourmodel.The“untestable”bitisimportanthere;it’s?netomakeassumptions,buttheseshouldonlyfeedintothetrainingofthemodel,notthetesting.So,toensurethisisthecase,youshouldavoidlookingcloselyatanytestdataintheinitialexploratoryanalysisstage.Otherwiseyoumight,consciouslyorunconsciously,makeassumptionsthatlimitthegeneralityofyourmodelinanuntestableway.ThisisathemeIwillreturntoseveraltimes,sincetheleakageofinformationfromthetestsetintothetrainingprocessisacommonreasonwhyMLmodelsfailtogeneralise.See
Don’tallowtestdatatoleakinto
thetrainingprocess
formoreonthis.
2.3Domakesureyouhaveenoughdata
Ifyoudon’thaveenoughdata,thenitmaynotbepossibletotrainamodelthatgener-alises.Workingoutwhetherthisisthecasecanbechallenging,andmaynotbeevidentuntilyoustartbuildingmodels:italldependsonthesignaltonoiseratiointhedataset.
4
Ifthesignalisstrong,thenyoucangetawaywithlessdata;ifit’sweak,thenyouneedmoredata.Ifyoucan’tgetmoredata—andthisisacommonissueinmanyresearch?elds—thenyoucanmakebetteruseofexistingdatabyusingcross-validation(see
Doevaluateamodelmultipletimes
).Youcanalsousedataaugmentationtechniques(e.g.see
Wongetal.
[
2016
]and
ShortenandKhoshgoftaar
[
2019
];fortimeseriesdata,see
IwanaandUchida
[
2021
]),andthesecanbequitee?ectiveforboostingsmalldatasets,though
Don’tdodataaugmentationbeforesplittingyourdata
.Dataaugmentationisalsousefulinsituationswhereyouhavelimiteddataincertainpartsofyourdataset,e.g.inclassi?cationproblemswhereyouhavelesssamplesinsomeclassesthanothers,asituationknownasclassimbalance.See
Haixiangetal.
[
2017
]forareviewofmethodsfordealingwiththis;alsosee
Don’tuseaccuracywithimbalanceddatasets
.Anotheroptionfordealingwithsmalldatasetsistousetransferlearning(see
Dokeepupwith
recentdevelopmentsindeeplearning
).However,ifyouhavelimiteddata,thenit’slikelythatyouwillalsohavetolimitthecomplexityoftheMLmodelsyouuse,sincemodelswithmanyparameters,likedeepneuralnetworks,caneasilyover?tsmalldatasets(see
Don’tassumedeeplearningwillbethebestapproach
).Eitherway,it’simportanttoidentifythisissueearlyon,andcomeupwithasuitablestrategytomitigateit.
2.4Dotalktodomainexperts
Domainexpertscanbeveryvaluable.Theycanhelpyoutounderstandwhichproblemsareusefultosolve,theycanhelpyouchoosethemostappropriatefeaturesetandMLmodeltouse,andtheycanhelpyoupublishtothemostappropriateaudience.Failingtoconsidertheopinionofdomainexpertscanleadtoprojectswhichdon’tsolveusefulproblems,orwhichsolveusefulproblemsininappropriateways.AnexampleofthelatterisusinganopaqueMLmodeltosolveaproblemwherethereisastrongneedtounderstandhowthemodelreachesanoutcome,e.g.inmakingmedicalor?nancialdecisions(see
Rudin
[
2019
]).Atthebeginningofaproject,domainexpertscanhelpyoutounderstandthedata,andpointyoutowardsfeaturesthatarelikelytobepredictive.Attheendofaproject,theycanhelpyoutopublishindomain-speci?cjournals,andhencereachanaudiencethatismostlikelytobene?tfromyourresearch.
2.5Dosurveytheliterature
You’reprobablynotthe?rstpersontothrowMLataparticularproblemdomain,soit’simportanttounderstandwhathasandhasn’tbeendonepreviously.Otherpeoplehavingworkedonthesameproblemisn’tabadthing;academicprogressistypicallyaniterativeprocess,witheachstudyprovidinginformationthatcanguidethenext.Itmaybediscouragingto?ndthatsomeonehasalreadyexploredyourgreatidea,buttheymostlikelyleftplentyofavenuesofinvestigationstillopen,andtheirpreviousworkcanbeusedasjusti?cationforyourwork.Toignorepreviousstudiesistopotentiallymissoutonvaluableinformation.Forexample,someonemayhavetriedyourproposedapproachbeforeandfoundfundamentalreasonswhyitwon’twork(andthereforesavedyouafewyearsoffrustration),ortheymayhavepartiallysolvedtheprobleminawaythatyou
canbuildon.So,it’simportanttodoaliteraturereviewbeforeyoustartwork;leavingittoolatemaymeanthatyouareleftscramblingtoexplainwhyyouarecoveringthesamegroundornotbuildingonexistingknowledgewhenyoucometowriteapaper.
2.6Dothinkabouthowyourmodelwillbedeployed
WhydoyouwanttobuildanMLmodel?Thisisanimportantquestion,andtheanswershouldin?uencetheprocessyouusetodevelopyourmodel.Manyacademicstudiesarejustthat—studies—andnotreallyintendedtoproducemodelsthatwillbeusedintherealworld.Thisisfairenough,sincetheprocessofbuildingandanalysingmodelscanitselfgiveveryusefulinsightsintoaproblem.However,formanyacademicstudies,theeventualgoalistoproduceanMLmodelthatcanbedeployedinarealworldsituation.Ifthisisthecase,thenit’sworththinkingearlyonabouthowitisgoingtobedeployed.Forinstance,ifit’sgoingtobedeployedinaresource-limitedenvironment,suchasasensororarobot,thismayplacelimitationsonthecomplexityofthemodel.Iftherearetimeconstraints,e.g.aclassi?cationofasignalisrequiredwithinmilliseconds,thenthisalsoneedstobetakenintoaccountwhenselectingamodel.Anotherconsiderationishowthemodelisgoingtobetiedintothebroadersoftwaresystemwithinwhichitisdeployed;thisprocedureisoftenfarfromsimple(see
Sculley
etal.
[
2015
]).However,emergingapproachessuchasMLOpsaimtoaddresssomeofthedi?culties;see
Tamburri
[
2020
]forareview,and
Shankaretal.
[
2022
]foradiscussionofcommonchallengeswhenoperationalisingMLmodels.
3Howtoreliablybuildmodels
BuildingmodelsisoneofthemoreenjoyablepartsofML.WithmodernMLframeworks,it’seasytothrowallmannerofapproachesatyourdataandseewhatsticks.However,thiscanleadtoadisorganisedmessofexperimentsthat’shardtojustifyandhardtowriteup.So,it’simportanttoapproachmodelbuildinginanorganisedmanner,makingsureyouusedatacorrectly,andputtingadequateconsiderationintothechoiceofmodels.
3.1Don’tallowtestdatatoleakintothetrainingprocess
It’sessentialtohavedatathatyoucanusetomeasurehowwellyourmodelgeneralises.Acommonproblemisallowinginformationaboutthisdatatoleakintothecon?guration,trainingorselectionofmodels(seeFigure
1
).Whenthishappens,thedatanolongerprovidesareliablemeasureofgenerality,andthisisacommonreasonwhypublishedMLmodelsoftenfailtogeneralisetorealworlddata.Thereareanumberofwaysthatinformationcanleakfromatestset.Someoftheseseemquiteinnocuous.Forinstance,duringdatapreparation,usinginformationaboutthemeansandrangesofvariableswithinthewholedatasettocarryoutvariablescaling—inordertopreventinformationleakage,thiskindofthingshouldonlybedonewiththetrainingdata.Othercommonexamplesofinformationleakagearecarryingoutfeatureselectionbeforepartitioningthedata(see
Dobecarefulwhereyouoptimisehyperparametersandselect
5
Figure1:See
Don’tallowtestdatatoleakintothetrainingprocess
.[left]Howthingsshouldbe,withthetrainingsetusedtotrainthemodel,andthetestsetusedtomeasureitsgenerality.[right]Whenthere’sadataleak,thetestsetcanimplicitlybecomepartofthetrainingprocess,meaningthatitnolongerprovidesarealiablemeasureofgenerality.
features
),usingthesametestdatatoevaluatethegeneralityofmultiplemodels(see
Douseavalidationset
and
Don’talwaysbelieveresultsfromcommunitybenchmarks
),andapplyingdataaugmentationbeforesplittingo?thetestdata(see
Don’tdodata
augmentationbeforesplittingyourdata
).Thebestthingyoucandotopreventtheseissuesistopartitiono?asubsetofyourdatarightatthestartofyourproject,andonlyusethisindependenttestsetoncetomeasurethegeneralityofasinglemodelattheendoftheproject(see
Dosavesomedatatoevaluateyour?nalmodelinstance
).Beparticularlycarefulifyou’reworkingwithtimeseriesdata,sincerandomsplitsofthedatacaneasilycauseleakageandover?tting—see
Don’tignoretemporaldependencies
intimeseriesdata
formoreonthis.Forabroaderdiscussionofdataleakage,see
Kapoor
andNarayanan
[
2022
].
3.2Dotryoutarangeofdi?erentmodels
Generallyspeaking,there’snosuchthingasasinglebestMLmodel.Infact,there’saproofofthis,intheformoftheNoFreeLunchtheorem,whichshowsthatnoMLapproachisanybetterthananyotherwhenconsideredovereverypossibleproblem[
Wolpert
,
2002
].So,yourjobisto?ndtheMLmodelthatworkswellforyourparticularproblem.Thereissomeguidanceonthis.Forexample,youcanconsidertheinductivebiasesofMLmodels;thatis,thekindofrelationshipstheyarecapableofmodelling.Forinstance,linearmodels,suchaslinearregressionandlogisticregression,areagoodchoiceifyouknowtherearenoimportantnon-linearrelationshipsbetweenthefeaturesinyourdata,butabadchoiceotherwise.Goodqualityresearchoncloselyrelatedproblemsmayalsobeabletopointyoutowardsmodelsthatworkparticularlywell.However,alotofthetimeyou’restillleftwithquiteafewchoices,andtheonlywaytoworkoutwhichmodelisbestistotrythemall.Fortunately,modernMLlibrariesinPython(e.g.scikit-learn[
Varoquauxetal.
,
2015
]),R(e.g.caret[
Kuhn
,
2015]
),Julia(e.g.MLJ[
Blaometal.
,
2020
])etc.allowyoutotryoutmultiplemodelswithonlysmallchangestoyourcode,sothere’snoreasonnottotrythemalloutand?ndoutforyourselfwhichoneworksbest.However,
Don’tuseinappropriatemodels
,and
Douse
6
7
Figure2:See
Dokeepupwithrecentdevelopmentsindeeplearning
.Aroughhistoryofneuralnetworksanddeeplearning,showingwhatIconsidertobethemilestonesintheirdevelopment.Forafarmorethoroughandaccurateaccountofthe?eld’shistoricaldevelopment,takealookat
Schmidhuber
[
2015
].
avalidationset
,ratherthanthetestset,toevaluatethem.Whencomparingmodels,
Dooptimiseyourmodel’shyperparameters
and
Doevaluateamodelmultipletimes
tomakesureyou’regivingthemallafairchance,and
Docorrectformultiplecomparisons
whenyoupublishyourresults.
3.3Don’tuseinappropriatemodels
Byloweringthebarriertoimplementation,modernMLlibrariesalsomakeiteasytoapplyinappropriatemodelstoyourdata.This,inturn,couldlookbadwhenyoutrytopublishyourresults.Asimpleexampleofthisisapplyingmodelsthatexpectcategoricalfeaturestoadatasetcontainingnumericalfeatures,orviceversa.SomeMLlibrariesallowyoutodothis,butitmayresultinapoormodelduetolossofinformation.Ifyoureallywanttousesuchamodel,thenyoushouldtransformthefeatures?rst;therearevariouswaysofdoingthis,rangingfromsimpleone-hotencodingstocomplexlearnedembeddings.Otherexamplesofinappropriatemodelchoiceincludeusingaclassi?cationmodelwherearegressionmodelwouldmakemoresense(orviceversa),attemptingtoapplyamodelthatassumesnodependenciesbetweenvariablestotimeseriesdata,orusingamodelthatisunnecessarilycomplex(see
Don’tassumedeeplearningwillbethe
bestapproach
).Also,ifyou’replanningtouseyourmodelinpractice,
Dothinkabout
howyourmodelwillbedeployed
,anddon’tusemodelsthataren’tappropriateforyourusecase.
8
3.4Dokeepupwithrecentdevelopmentsindeeplearning
Machinelearningisafast-moving?eld,andit’seasytofallbehindthecurveanduseapproachesthatotherpeopleconsidertobeoutmoded.Nowhereisthismorethecasethanindeeplearning.So,whilstdeeplearningmaynotalwaysbethebestsolution(see
Don’tassumedeeplearningwillbethebestapproach
),ifyouaregoingtousedeeplearning,thenit’sadvisabletotryandkeepupwithrecentdevelopments.Togivesomeinsightintothis,Figure
2
summarisessomeoftheimportantdevelopmentsovertheyears.Multilayerperceptrons(MLP)andrecurrentneuralnetworks(particularlyLSTM)havebeenpopularforsometime,butareincreasinglybeingreplacedbynewermodelssuchasconvolutionalneuralnetworks(CNN)andtransformers.CNNs(see
Lietal.
[
2021
]forareview)arenowthego-tomodelformanytasks,andcanbeappliedtobothimagedataandnon-imagedata.Beyondtheuseofconvolutionallayers,someofthemainmilestoneswhichledtothesuccessofCNNsincludetheuseofrecti?edlinearunits(ReLU),theadoptionofmodernoptimisers(notablyAdamanditsvariants)andthewidespreaduseofregularisation,especiallydropoutlayersandbatchnormalisation—sogiveseriousconsiderationtoincludingtheseinyourmodels.Anotherimportantgroupofcontemporarymodelsaretransformers(see
Linetal.
[
2022
]forareview).Thesearegraduallyreplacingrecurrentneuralnetworksasthego-tomodelforprocessingsequentialdata,andareincreasinglybeingappliedtootherdatatypestoo,suchasimages[
Khanetal.
,
2022
].AprominentdownsideofbothtransformersanddeepCNNsisthattheyhavemanyparametersandthereforerequirealotofdatatotrainthem.However,anoptionforsmalldatasetsistousetransferlearning,whereamodelispre-trainedonalargegenericdatasetandthen?ne-tunedonthedatasetofinterest[
Hanetal.
,
2021
].Foranextensive,yetaccessible,guidetodeeplearning,see
Zhangetal.
[
2021
].
3.5Don’tassumedeeplearningwillbethebestapproach
Anincreasinglycommonpitfallistoassumethatdeepneuralnetworkswillprovidethebestsolutiontoanyproblem,andconsequentlyfailtotryoutother,possiblymoreappropriate,models.Whilstdeeplearningisgreatforcertaintasks,itisnotgoodateverything;thereareplentyofexamplesofitbeingout-performedby“oldfashioned”machinelearningmodelssuchasrandomforestsandSVMs.See,forinstance,
Grinsztajn
etal.
[
2022
],whoshowthattree-basedmodelsoftenoutperformdeeplearnersontabulardata.Certainkindsofdeepneuralnetworkarchitecturemayalsobeill-suitedtocertainkindsofdata:see,forexample,
Zengetal.
[
2022
],whoarguethattransformersarenotwell-suitedtotimeseriesforecasting.Therearealsotheoreticalreasonswhyanyonekindofmodelwon’talwaysbethebestchoice(see
Dotryoutarangeofdi?erentmodels
).Inparticular,adeepneuralnetworkisunlikelytobeagoodchoiceifyouhavelimiteddata,ifdomainknowledgesuggeststhattheunderlyingpatternisquitesimple,orifthemodelneedstobeinterpretable.Thislastpointisparticularlyworthconsider
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度高科技大棚設(shè)施租賃承包合同書2篇
- 醫(yī)療物資緊急配送流程優(yōu)化實(shí)踐
- 2024年版水電施工勞務(wù)分包合同版B版
- 醫(yī)療展區(qū)的康復(fù)景觀與自然光線的利用
- 2025中國鐵建房地產(chǎn)集團(tuán)限公司招聘35人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國融通資產(chǎn)管理集團(tuán)限公司春季社會(huì)招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國移動(dòng)江西公司社會(huì)招聘24人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國石油天然氣集團(tuán)校園招聘5661人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國電力科學(xué)研究院限公司校園招聘100人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國電信校園招聘崗位高頻重點(diǎn)提升(共500題)附帶答案詳解
- 廢棄催化劑中貴金屬的回收
- 期末 (試題) -2024-2025學(xué)年譯林版(三起)(2024)英語三年級上冊
- 高職計(jì)算機(jī)專業(yè)《Web前端開發(fā)技術(shù)》說課稿
- 知識(shí)點(diǎn)填空練習(xí)-2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 學(xué)習(xí)使用顯微鏡 2024-2025學(xué)年七年級上冊生物同步課件(人教版2024)
- 護(hù)理疑難病例討論課件模板
- 【獨(dú)立儲(chǔ)能】山西省獨(dú)立儲(chǔ)能政策及收益分析-中國能建
- 別墅群施工組織設(shè)計(jì)
- 建筑工程代付款協(xié)議書
- 判斷推理練習(xí)試卷1(共100題)
- 中東及非洲沖擊式破碎機(jī)行業(yè)現(xiàn)狀及發(fā)展機(jī)遇分析2024-2030
評論
0/150
提交評論