版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第頁共頁高中數(shù)學知識點必修一總結(jié)大全高一數(shù)學知識點總結(jié)一、集合、簡易邏輯1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。二、函數(shù)1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴大;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應用舉例。三、數(shù)列(12課時,5個)1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。四、三角函數(shù)1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的根本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。五、平面向量1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的間隔;8.平移。六、不等式1.不等式;2.不等式的'根本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。七、直線和圓的方程1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的間隔;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程。八、圓錐曲線1.橢圓及其標準方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標準方程;7.拋物線的簡單幾何性質(zhì)。九、直線、平面、簡單何體1.平面及根本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的斷定與性質(zhì);5.直線和平面垂直的斷定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的間隔;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的間隔;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的間隔;22.二面角及其平面角;23.兩個平面垂直的斷定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。十、排列、組合、二項式定理1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。十一、概率1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.互相獨立事件同時發(fā)生的概率;5.獨立重復試驗。必修一函數(shù)重點知識整理1.函數(shù)的奇偶性(1)假設f(x)是偶函數(shù),那么f(x)=f(-x);(2)假設f(x)是奇函數(shù),0在其定義域內(nèi),那么f(0)=0(可用于求參數(shù));(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);(4)假設所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有一樣的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;2.復合函數(shù)的有關(guān)問題(1)復合函數(shù)定義域求法:假設的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;假設f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原那么。(2)復合函數(shù)的單調(diào)性由“同增異減”斷定;3.函數(shù)圖像(或方程曲線的對稱性)(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;(5)假設函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,那么y=f(x)圖像關(guān)于直線x=a對稱;(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;4.函數(shù)的周期性(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a》0)恒成立,那么y=f(x)是周期為2a的周期函數(shù);(2)假設y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,那么f(x)是周期為2︱a︱的周期函數(shù);(3)假設y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,那么f(x)是周期為4︱a︱的周期函數(shù);(4)假設y=f(x)關(guān)于點(a,0),(b,0)對稱,那么f(x)是周期為2的周期函數(shù);(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,那么函數(shù)y=f(x)是周期為2的周期函數(shù);(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,那么y=f(x)是周期為2的周期函數(shù);5.方程k=f(x)有解k∈D(D為f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a》0,a≠1,b》0,n∈R+);(2)logaN=(a》0,a≠1,b》0,b≠1);(3)logab的符號由口訣“同正異負”記憶;(4)alogaN=N(a》0,a≠1,N》0);8.判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有一樣的象;9.能純熟地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。10.對于反函數(shù),應掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個函數(shù)具有一樣的單調(diào)性;(5)y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,那么有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;12.根據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題13.恒成立問題的處理方法:(1)別離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。拓展閱讀:高中數(shù)學復習方法1、把答案蓋住看例題例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的訓練,自己的思維空間擴展了,看問題也全面了。假如把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。2、研究每題都考什么數(shù)學才能的進步離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。3、錯一次反思一次每次業(yè)及考試或多或少會發(fā)生些錯誤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)水利改造升級技術(shù)應用合同
- 旅游地產(chǎn)投資合同審查策略
- 建筑供滑雪場人工費施工合同
- 會計服務外包服務合同范本
- 城市機場廣告牌施工合同
- 工業(yè)廠房屋面瓦安裝協(xié)議
- 動漫產(chǎn)業(yè)質(zhì)檢崗位聘用合同模板
- 造紙工程私人施工合同樣式
- 消防工程勞務合同模板
- 建筑工程防雷施工合同范本
- 2023-2024學年廣東省深圳市南山區(qū)八年級(上)期末英語試卷
- 期末 (試題) -2024-2025學年人教PEP版(2024)英語三年級上冊
- 中醫(yī)跨文化傳播智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學
- 剪刀式升降車專項施工方案
- 風電項目監(jiān)理大綱附錄風電工程設備監(jiān)理項目表
- 《混凝土結(jié)構(gòu)》(樓蓋)課程設計任務書
- 邵雍河洛理數(shù)解卦
- 趙本山《賣拐》臺詞
- 上海建設工程通用硅酸鹽水泥質(zhì)量檢驗報告 - 上海水泥行業(yè)協(xié)會
- 工程測量英語常用詞匯
- 國軍標與國標的區(qū)別
評論
0/150
提交評論