生物能源與碳捕集和封存(2021年)_第1頁
生物能源與碳捕集和封存(2021年)_第2頁
生物能源與碳捕集和封存(2021年)_第3頁
生物能源與碳捕集和封存(2021年)_第4頁
生物能源與碳捕集和封存(2021年)_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1

BIOENERGYANDCARBON

CAPTUREANDSTORAGE

CHRISTOPHERCONSOLI

SeniorConsultant-Storage

2

Keymessages

?BECCSrequiresthewide-scaledeploymentofCCS

?HistoricallyBECCSdeploymenthasbeenslow;therearefewoperatingfacilities

?MajorBECCStechnologiesaremature;theirpotentialissubstantial

?Theavailabilityofland,waterandfertilisertosupplybiomassisthemajorconstraintonBECCS

?MostclimatechangescenariosusenegativeemissionstechnologiestodrawCO2fromtheatmosphere;ofthese,BECCSisthebestoption

?ThescaleofBECCSdeploymentreachesgigatonnesofCO2storedperyeartomeetglobalwarmingtargetssetfortheendofthecentury

3

Negativeemissionstechnologieswillbeneededtomeettargets;BECCSisthebestoption

Afteralmostthirtyyearsofclimatechangenegotiations,globalCO2levelsarestillrising(NOAA,2018).TheUNFCCCParisAgreementgoalsofholdingglobalwarmingto‘well-below’2°Candto‘pursueefforts’tolimititto1.5°Careinstarkcontrasttotheever-dwindlingcarbonbudget.

Theevidencemakesitclear.CO2needstoberemovedfromtheatmosphere,knownascarbondioxideremoval(CDR)1,usingnegativeemissionstechnologies(NETs)tomeetglobalwarmingtargets.Bioenergywithcarboncaptureandstorage(BECCS)isemergingasthebestsolutiontodecarboniseemission-intensiveindustriesandsectorsandenablenegativeemissions(Figure1).

BECCSisagroupofdifferenttechnologiestoproduceenergyfrombiomassandstoretheCO2

BECCSispartofthebroaderCCStechnologygroup.Bioenergyhasbeenusedsincethedawnoftimebyhumanstoproduceheat.Today,bioenergyisusedtofuelvehiclesthroughbioethanolandprovideelectricitybyburningbiomass.

CCShasbeenworkingsafelyandeffectivelysince1972tocaptureCO2fromawiderangeofindustriesandsectors.Today,thereare18large-scalefacilitiesinoperation,fiveunderconstructionand20invariousstagesofdevelopment.CCSisbecomingtheconduitforanewenergyeconomyandenablingthedecarbonisationofindustry–includingBECCS.

Figure1:Bioenergyandcarboncaptureandstorage(BECCS)schematic

BECCSinvolvestheutilisationofbiomassasanenergysourceandthecaptureandpermanentstorageofCO2producedduringtheconversionofbiomasstoenergy.Thereisnosingular

1CDRtechnologiesincludeafforestation,reforestation,oceanfertilisation,DACS,andBECCS

4

definitionof“BECCS”sinceitcanincludeavarietyofindustries,biomassfeedstocksandmethodsofenergyconversion.Thefinaluseofthebiomassalsovarieswidely.

WhatisclearisthatCCSisintegraltotheprocess,whichincludes:

1.BiomassfeedstockdrawsdownCO2fromtheatmospherethroughphotosynthesisastheplantsgrow.

?Biomassfeedstockisderivedfromaresidualproduct(e.g.sugarcanewaste)ordedicatedenergycrops(e.g.fast-growingtreespecieslikewillowstrees)plantedpurelyasafeedstock

?Todaybiomassfeedstocksupplyisdominatedbyforestmanagementschemesandagriculture

?Algaecultivationandmunicipalorganicsolidwasteisbeingtested

2.Biomassisthentransportedtotheend-useroraconversionfacility.

3.Biomassiscombustedorisconvertedtobiofuelusingdigestion/fermentationprocesses.CO2isproducedduringcombustionorconversion.

4.CO2isthencapturedandstored.

5.NegativeemissionsarepossibleiftheCO2storedisgreaterthantheCO2emittedduringbiomassproduction,transport,conversationandutilisation.

BECCSisappliedintwooverarchingmethodsaccordingtotheutilisationofthebiomass–combustionandconversion.Combustiondirectlyusesbiomassasafuelsourcetoproduceheatforuseinelectricitygenerationorindustrialapplicationsincludingcement,pulpandpapermaking,wasteincineration,steelandiron,andpetrochemicaltohighlightafew.TheCO2iscapturedfromthefluegasstreamproducedduringcombustion.

Thesecondmethodinvolvestheconversionofbiomassthrougheitherdigestionorfermentationtoproducegaseousorliquidfuels,respectively.Themostcommonfuelisbioethanolwhichproducesanear-purestreamofCO2duringthefermentationprocess.TheCO2isthencompressedandstored,omittingtheneedforcapture.ThesubsequentcombustionofthebiofuelorgasalsoproducesCO2which,ifnotstored,resultsinoverallloweremissionsreduction.

HistoricallyBECCSdeploymenthasbeenslow;therearefewoperatingfacilities

Currently,fivefacilitiesaroundtheworldareactivelyusingBECCStechnologies(Figure2;Appendix1).Collectively,thesefacilitiesarecapturingapproximately1.5milliontonnesperyear(Mtpa)ofCO2.

Theonlylarge-scale2BECCSfacilityistheIllinoisIndustrialCCSfacilitythatcapturesupto1MtpaofCO2.OwnedbyArcherDanielsMidland,thisfacilityproducesethanolfromcornatitsDecaturplant,producingCO2aspartofthefermentationprocess.TheCO2isstoredinadedicatedgeologicalstoragesitedeepunderneaththefacility.

2TheGlobalCCSInstitutedefinitionoflarge-scaleiscapturingandstoringgreaterthan400,000tpaCO2forindustrialfacilities;800,000tpaCO2forpowergeneration.

5

TheremainingfourBECCSfacilitiesoperatingtodayaresmall-scaleethanolproductionplants,usingmostoftheCO2forenhancedoilrecovery(EOR);including:

1.KansasArkalon(USA):200,000tpaofCO2iscompressedandpipedfromanethanolplantinKansastoBookerandFarnsworthOilUnitsinTexasforEOR.

2.BonanzaCCS(USA):100,000tpaofCO2iscompressedandpipedfromanethanolplantinKansastonearbyStewartOilfieldforEOR.

3.HuskyEnergyCO2Injection(Canada):250tonnesperday(tpd)ofCO2iscompressedandtruckedfromanethanolplantinSaskatchewantonearbyLashburnandTangleflagsoilfieldsforEOR;thefieldsareshallow(~500m)andcompriseheavyoil.

4.Farnsworth(USA):Over600,000tonnesofCO2wascompressedfromanethanolplant(Kansas)andfertiliserplant(Texas)andpipedtoFarnsworthoilfieldforEOR.InjectionhasnowceasedaspartofDOE/NETLSouthWestPartnershipsDevelopmentPhasebutcurrentlymonitoringtheinjectedCO2atanongoingEORoperation.

ThreeadditionalprojectsareplanningonBECCS:

1.MikawaPowerPlant(Japan):Theretrofitofa49-megawattunitpowerplantinOmuta(FukuokaPrefecture)toaccept100percentbiomasswithaCO2capturefacility.Thefocusisnowidentifyingasecureoffshorestoragesite.

2.DraxPowerPlant(UK):BiomasspowergenerationpilotinNorthYorkshirewiththepotentialtodevelopCO2captureandstorage

3.NorwegianFull-ChainCCS(Norway):BECCSintegrationintowaste-to-energyandacementplants:

?Klemetsrudwaste-to-energyplant:Planstocapture400,000tpaofCO2.

?NorcemCementplant:Currentlyco-firesupto30percentbiomassandplanstocaptureupto400,000tpaofCO2.

?BothplantswillsendtheirCO2toamulti-userstoragesiteintheNorwegianNorthSea.

SeveralnotablebioenergyfacilitiesutilisetheCO2forcropcultivation(greenhouses).(SeeAppendix1fordetails).

6

Figure2.Bioenergyandcarboncaptureandstoragefacilitiesworldwide(GlobalCCSInstitute,2019)

7

MajorBECCStechnologiesaremature;thepotentialissubstantial

Theindividualtechnologiestoutilisebiomasstoproduceenergyorfuel,aswellasthecapture,transportandstorageofCO2,areallmatureandactiveincommercialfacilitiesaroundtheworld

(Table1)

.

ThereisenormouspotentialforBECCS.Thelargest(intermsofenergyproduction)andmostcommercially-attractiveBECCSapplicationistheproductionofbioethanolandCCS.Thetechnologyisalreadymature.In2017,around68Mtoe3ofbiomass-derivedbiofuelswereproduced;two-thirdswereethanol(IEA,2018).TheUSAproducesoverhalfoftheworld’sbiofuels,butthereareopportunitiesaroundtheworld,includingdevelopingnationsacrossSouthAmerica,Sub-SaharanAfricaandSouthEastAsia.AnincreaseinbiofueluseinthetransportsectorcouldinitiateareductioninCO2emissionsinatraditionallydifficultsectortodecarbonise.

Forglobalpowergeneration,biomasssuppliesabout52Gigawatts(GW)(CSLF,2018).Justthose52GWtodaycouldresultinsignificantCO2reductioniftheCO2iscaptureandstored.TheDraxPowerplantinYorkshire,UK,completedaconversionofthree660megawatts(MW)unitstousebiomass(GlobalCCSInstitute,2019).Asstatedpreviously,theyareundertakingapilotcapturefacilityalso.

PerhapsoneofthelargestBECCSapplicationsiswaste-to-energy(WtE).Burningmunicipalsolidwaste(anotherformofbiomass)togenerateheatandelectricityandcapturingandstoringtheCO2willresultinnegativeemissions4.ThetechnologybehindcapturingtheCO2inthefluegasofaWtEplantissimilartoCO2captureonfossilfuelplants.ThenumbersfromtheCarbonSequestrationLeadershipForum(CSLF)arestaggering:

?Percentofwasteburntforenergy:Japan,70percent;Norway,53percent;UK,26percent;USA,13percent

?NumberofWtEfacilitiespercountry/region:EU,455;China,223;USA,74

Inadditiontothosethreespecificindustries,BECCScouldbeappliedtoindustriesthatrequiresignificantheatandelectricityduringproduction.Forexample,biomasscurrentlysuppliessixpercentoftotalthermalenergyforcementproductionglobally.Asdiscussed,thereiscurrentlyoneplannedBECCSfacilityoncementinNorway.However,theglobalpledgefromcementproducersisareductionof20-25percentofemissionsby2030;equivalentto1Gtcomparedtobusinessasusual(CSLF,2018).CCSistheonlyoptiontodecarboniseforthecementindustry(dePeeetal.,2018);applyingBECCScouldhelpthecementindustrytomeetthatpledge.

3Mtoe,milliontonnesofoilequivalentisaunitofenergy,representingtheamountofenergyreleasedbyburningonetonneofcrudeoil.

4Thenetnegativeemissionsandenergygeneratedbyburningwastedependsonratioofbiogenictonon-biogenicwasteandvariesfromsitetosite.

8

FEEDSTOCK

TRL

Lignocellulose(ForestryandWood)

Large-scalePilottoFull-Commercial

Agricultural

residues

Large-scalePilottoFullCommercial

Sugars/starch

crops

Proof-of-conceptReachedtoFullCommercial

Organicwaste

FullCommercial

Algae

Pre-commercial

Demonstration

Oilcrops/waste

Proof-of-conceptReachedto

FullCommercial

PROCESS

TRL

Combustion

FullCommercial

Gasification

BasicConceptto

First-of-KindCommercial

Fermentation

PrototypePilottoFullCommercial

Anaerobic

digestion

FullCommercial

Extraction

Pre-commercial

Demonstrationto

FullCommercial

Densification

FullCommercial

Pyrolysis

Large-scalePilotto

FullCommercial

Table1.TechnicalReadinessLevel(TRL)rangeorfinallevelreachedofthefundamentalpartsofbioenergyandcarboncaptureandstorage(After:CSLF(2018);NAS(2018)

PRODUCT

TRL

Steam/Heat

FullCommercial

Ethanol

FullCommercial

Biodiesel

FullCommercial

Liquid

hydrocarbon

ConceptValidationto

Pre-commercial

Demonstration

Methane

FullCommercial

Vegetableoil

FullCommercial

Pellets

FullCommercial

Biochar/Charcoal

FullCommercial

9

ThecostofimplementingBECCStechnologyvarieswidely.AreviewoftheentireliteratureonBECCSbyFussetal.(2018)foundacostrangebetweenUS$15-400pertonneofCO2avoided

dependingonthesector

(Table2)

.

Table2.CostofCCSappliedtodifferentsectors(AfterFussetal.(2018);NAS(2018)

BECCS

Sector

Combustion

Ethanol

Pulpandpapermills

Biomassgasification

CO2avoided5cost(US$/tCO2)

88-288

20-175

20-70

30-76

FossilFuel-

Powergeneration(coal)

55-83

firedand

Powergeneration(gas)

43-89

CCS

Naturalgas

Ironandsteel

Cement

20-21

65-77

103-124

MostclimatechangescenariosuseBECCStomeettargetsatgigatonnescale

Climatechangeintegratedassessmentmodels(IAMs)6haveafirmrelianceonCDRbecausethemodelsassumeCDRdeploymentinthefutureislowercostthanreducingcurrentemissions(Anderson&Peters,2016).ThisassumptionmeansdeployingBECCSinthefuture,evenatagigatonneindustrial-scaleisstillcheaperthanreducingemissionstoday.BECCSisthemostwidelyusedCDRtechnologyfromaround2030till2100becausethetechnology:

?Enablesnegativeemissions

?Producesbioenergytooffsetorreplacecurrentfossilfuel-derivedsources

ThemostwidelyusedaverageforBECCScontributionintheliteratureis3.3gigatonneperannum(Gtpa)CO2in2100derivedfromtheIPCC’slastfullClimateChangeAssessmentReportin2014(Smithetal.,2015).

However,thedwindlingcarbonbudgetcreatesever-increasingrelianceonnegativeemissionstomeetclimatechangetargets;especiallyforthetargetthatlimitsglobalwarmingto1.5oCasdetailedintheIPCCSR15report.TheSR15reportidentifiesthecumulativeBECCScontributionofbetween0and1191GtCO2,dependingonthescenariopathway.Thosepathwaysremovebetween0-8GtpaCO2in2030throughBECCS.In2100,theupperrangeofthe1.5oCscenariosis16GtpaofCO2.Figure3showsthegrowingroleofBECCSthroughoutthiscenturyacrossthevariousscenariosoftheIPCCandtheIEA.

ThewidevariationinBECCScontributiontoclimatechangescenariosisduetothedifferentscenarios.Ingeneralterms,scenariosthatassumemoreaggressivereductionsindemandforenergyandemissions-intensiveproducts(e.g.chemicals,cement,steel)requirefewerNETsandlessBECCS.Alternatively,scenariosthatmorecloselyresemblecurrenttrendswith

5SeeLawrence(2017)foradditionaldata.Valuerangerepresentslowesttohighestvaluereported.

6IAMsarecomputermodelsthatintegratephysicalandsocial-economicfactorsrelatedtoclimatechangebasedonassumptions,historicaldataandscenariodesignstoassessvariousoutcomesofpolicy,technologyandclimateimpacts.

10

comparablepatternsofenergyuseanddemandforemissions-intensiveproductsrequiremoreNETsandthereforemoreBECCS(Allenetal.,2018).

Whatisclearisthatbytheendofthecentury,BECCSneedstobedeployedatagigatonneofCO2peryearscale(Figure3).

Figure3.TotalCO2storedfrombioenergyandcarboncaptureandstorageinclimatechangemodelsaccordingtorecentdata(DatafromHuppmannetal.(2018)andIEA(2018).TheSharedSocioeconomicPathways(SSP)areaseriesofsocio-economicpathwaysthatguidefuturedevelopmentintheintegratedassessmentmodels(SeeIIASA(2018)formoreinformationonSSP)

BiomasssupplyisaconstraintonBECCS

Integratedassessmentmodelsusedtodevelopclimatechangescenariosgenerallyassumethatconstraintsonbiomassproduction,suchastheavailabilityofland,waterandfertiliser,donotpreventsufficientbiomasssupply.

AreviewoftheliteratureidentifiesthatthelimitingfactorofBECCSisnottechnology;itisthesupplyofbiomass.

NAS(2018)foundthatinnegativeemissionsscenariosusingBECCS,everygigatonneofCO2storedperyearrequiresapproximately30-40millionhectaresofBECCSfeedstock(NAS,2018).AccordingtotheCSLF(2018)thisequatestoapproximately430-580millionhectaresof

11

landdevotedtobioenergycrops7.TheCSLFestimatedthatusingonlydedicatedbioenergycrops(anefficientmethodtoproducebioenergy)mayrequireuptoone-thirdofarablelandaroundtheworld(CSLF,2018).

Toputthosenumbersintoperspective,accordingtoAndersonandPeters(2016)anareaonetotwotimesthesizeofIndiaisrequiredtomeettheBECCStargetsbasedonpublishedIAMs(Anderson&Peters,2016).

Intermsofspecificincreasesinbiomass,meetingtheupperboundsoftheBECCStargets,accordingtoFajardyandMacDowell(2017)equals:

?Threetimestheworld’stotalcerealproduction

?Twicetheannualworlduseofwaterforagriculture

?Twentytimestheannualuseofnutrients

MeetingtheBECCStargetsrequiresafundamentalrevolutionoftheproductionoffoodandenergycrops.However,modellingaccordingtoFajardyandMacDowell(2017)indicatesthatBECCScanbesustainablewhentargetingthecorrectenergycropsandbestland-usepractices.

BECCSrequiresthewide-scaledeploymentofCCS

Thereisnodoubtthatnegativeemissiontechnologies,mainlyBECCS,arecriticaltoclimatestabilisation.Thereishoweversignificantuncertaintyaboutthescaleofthatcontribution.EspeciallyifthetechnologyisexpectedtomeetgigatonneperyearCO2storagescale.Themostnotableconstraintisthesupplyofsustainablebiomass.

Thepotential,futuredeploymentofBECCSshouldnotbeconsideredasanalternativetoachievingcritical,cross-sectoremissionsreductionstoday.BECCSshouldbeseenasanessentialcomplementtotherequired,wide-scaledeploymentofCCStomeetclimatechangetargets.

7LandrequirementbasedonBECCScontributionof3.3GtpaCO2storedaccordingtoSmithetal.(2015).

12

References

Allenetal.,2018.TechnicalSummary;Globalwarmingof1.5°C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5°C,IPCC.

Anderson,K.&Peters,G.,2016.Thetroublewithnegativeemissions.Science,354(6309),pp.182-183.

CSLF,2018.TechnicalSummaryofBioenergyCarbonCaptureandStorage(BECCS),CarbonSequestrationLeadershipForum.

dePeeetal.,2018.Decarbonizationofindustrialsectors:thenextfrontier,McKinsey&Company.Fajardy,M.&MacDowell,N.,2017.CanBECCSdeliversustainableandresourceefficientnegativeemissions?.EnergyandEnvironmentalScience,Volume10,pp.1389-1426.

Fussetal.,2018.Negativeemissions—Part2:Costs,potentialsandsideeffects.EnvironmentalResearchLetters,13(063002).

GlobalCCSInstitute,2019.CO2REFacilityDatabase.[Online].

Huppmannetal.,2018.IAMC1.5°CScenarioExplorerandDatahostedbyIIASA,Integrated

AssessmentModelingConsortium&InternationalInstituteforAppliedSystemsAnalysis.

IEA,2018.WorldEnergyOutlook,Paris:IEA.

InternationalInstituteforAppliedSystemsAnalysis(IIASA),2018.SSPDatabase(Shared

SocioeconomicPathways)-Version2.0.[Online]

Availableat:https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

[AccessedFebruary2019].

Lawrence,I.,2017.GlobalCostsofcarboncaptureandstorage:2017update,Melbourne:GlobalCCSInstitute.

NationalAcademyofSciences(NAS),2018.NegativeEmissionsTechnologiesandReliableSequestration:AResearchAgenda,Washington,DC:TheNationalAcademiesPress.

NOAA,2018.GlobalGreenhouseGasReferenceNetwork.[Online]

Availableat:/gmd/ccgg/trends/full.html

[AccessedJanuary2018].

Smithetal.,2015.BiophysicalandeconomiclimitstonegativeCO2emissions.NatureClimateChange,Volume6,pp.42-50.

13

APPENDIX1

1

IllinoisIndustrialCarbonCaptureandStorage

ADMcorn-to-ethanolplant

Decatur,Illinois,US

Large

Operating

2017

1,000,000

EthanolProduction

DemonstrationandPilot

Completed

2011-2014

300,000

2

NorwayFullChainCCS

Brevik(NorcemAS),Her?ya(YaraNorgeAS),Klemetsrud(KlemetsrudanleggetAS)

Norway

Largescale

Advanced

development

2023-2024

800,000

CementProduction

(>30%biomass),

Waste-to-energy

(50-60biomass)

CO2CaptureTestFacilityatNorcemBrevikCement,Pilot

Completed

2013

Variable

3

Occidental/WhiteEnergy

HerefordPlantandPlainviewBioenergy

Texas,UnitedStates

Inevaluation

Inevaluation

TBC

600,000-700,000

EthanolProduction

4

RusselCO2injectionplant

ICMethanolplant

Russel,Kansas,

UnitedStates

DemonstrationandPilot

Completed

2003-2005

7,700tonnes(total)

EthanolProduction

5

ArkalonCO2CompressionFacility

ArkalonEnergyethanolplant

Liberal,Kansas,US

DemonstrationandPilot

Operational

2009

290,000

EthanolProduction

6

BonanzaBioEnergyCCUSEOR

BonanzaBioEnergy

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論