![生物能源與碳捕集和封存(2021年)_第1頁](http://file4.renrendoc.com/view/a52bb4dc5abea4f2a19d1ff8c9580d4f/a52bb4dc5abea4f2a19d1ff8c9580d4f1.gif)
![生物能源與碳捕集和封存(2021年)_第2頁](http://file4.renrendoc.com/view/a52bb4dc5abea4f2a19d1ff8c9580d4f/a52bb4dc5abea4f2a19d1ff8c9580d4f2.gif)
![生物能源與碳捕集和封存(2021年)_第3頁](http://file4.renrendoc.com/view/a52bb4dc5abea4f2a19d1ff8c9580d4f/a52bb4dc5abea4f2a19d1ff8c9580d4f3.gif)
![生物能源與碳捕集和封存(2021年)_第4頁](http://file4.renrendoc.com/view/a52bb4dc5abea4f2a19d1ff8c9580d4f/a52bb4dc5abea4f2a19d1ff8c9580d4f4.gif)
![生物能源與碳捕集和封存(2021年)_第5頁](http://file4.renrendoc.com/view/a52bb4dc5abea4f2a19d1ff8c9580d4f/a52bb4dc5abea4f2a19d1ff8c9580d4f5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1
BIOENERGYANDCARBON
CAPTUREANDSTORAGE
CHRISTOPHERCONSOLI
SeniorConsultant-Storage
2
Keymessages
?BECCSrequiresthewide-scaledeploymentofCCS
?HistoricallyBECCSdeploymenthasbeenslow;therearefewoperatingfacilities
?MajorBECCStechnologiesaremature;theirpotentialissubstantial
?Theavailabilityofland,waterandfertilisertosupplybiomassisthemajorconstraintonBECCS
?MostclimatechangescenariosusenegativeemissionstechnologiestodrawCO2fromtheatmosphere;ofthese,BECCSisthebestoption
?ThescaleofBECCSdeploymentreachesgigatonnesofCO2storedperyeartomeetglobalwarmingtargetssetfortheendofthecentury
3
Negativeemissionstechnologieswillbeneededtomeettargets;BECCSisthebestoption
Afteralmostthirtyyearsofclimatechangenegotiations,globalCO2levelsarestillrising(NOAA,2018).TheUNFCCCParisAgreementgoalsofholdingglobalwarmingto‘well-below’2°Candto‘pursueefforts’tolimititto1.5°Careinstarkcontrasttotheever-dwindlingcarbonbudget.
Theevidencemakesitclear.CO2needstoberemovedfromtheatmosphere,knownascarbondioxideremoval(CDR)1,usingnegativeemissionstechnologies(NETs)tomeetglobalwarmingtargets.Bioenergywithcarboncaptureandstorage(BECCS)isemergingasthebestsolutiontodecarboniseemission-intensiveindustriesandsectorsandenablenegativeemissions(Figure1).
BECCSisagroupofdifferenttechnologiestoproduceenergyfrombiomassandstoretheCO2
BECCSispartofthebroaderCCStechnologygroup.Bioenergyhasbeenusedsincethedawnoftimebyhumanstoproduceheat.Today,bioenergyisusedtofuelvehiclesthroughbioethanolandprovideelectricitybyburningbiomass.
CCShasbeenworkingsafelyandeffectivelysince1972tocaptureCO2fromawiderangeofindustriesandsectors.Today,thereare18large-scalefacilitiesinoperation,fiveunderconstructionand20invariousstagesofdevelopment.CCSisbecomingtheconduitforanewenergyeconomyandenablingthedecarbonisationofindustry–includingBECCS.
Figure1:Bioenergyandcarboncaptureandstorage(BECCS)schematic
BECCSinvolvestheutilisationofbiomassasanenergysourceandthecaptureandpermanentstorageofCO2producedduringtheconversionofbiomasstoenergy.Thereisnosingular
1CDRtechnologiesincludeafforestation,reforestation,oceanfertilisation,DACS,andBECCS
4
definitionof“BECCS”sinceitcanincludeavarietyofindustries,biomassfeedstocksandmethodsofenergyconversion.Thefinaluseofthebiomassalsovarieswidely.
WhatisclearisthatCCSisintegraltotheprocess,whichincludes:
1.BiomassfeedstockdrawsdownCO2fromtheatmospherethroughphotosynthesisastheplantsgrow.
?Biomassfeedstockisderivedfromaresidualproduct(e.g.sugarcanewaste)ordedicatedenergycrops(e.g.fast-growingtreespecieslikewillowstrees)plantedpurelyasafeedstock
?Todaybiomassfeedstocksupplyisdominatedbyforestmanagementschemesandagriculture
?Algaecultivationandmunicipalorganicsolidwasteisbeingtested
2.Biomassisthentransportedtotheend-useroraconversionfacility.
3.Biomassiscombustedorisconvertedtobiofuelusingdigestion/fermentationprocesses.CO2isproducedduringcombustionorconversion.
4.CO2isthencapturedandstored.
5.NegativeemissionsarepossibleiftheCO2storedisgreaterthantheCO2emittedduringbiomassproduction,transport,conversationandutilisation.
BECCSisappliedintwooverarchingmethodsaccordingtotheutilisationofthebiomass–combustionandconversion.Combustiondirectlyusesbiomassasafuelsourcetoproduceheatforuseinelectricitygenerationorindustrialapplicationsincludingcement,pulpandpapermaking,wasteincineration,steelandiron,andpetrochemicaltohighlightafew.TheCO2iscapturedfromthefluegasstreamproducedduringcombustion.
Thesecondmethodinvolvestheconversionofbiomassthrougheitherdigestionorfermentationtoproducegaseousorliquidfuels,respectively.Themostcommonfuelisbioethanolwhichproducesanear-purestreamofCO2duringthefermentationprocess.TheCO2isthencompressedandstored,omittingtheneedforcapture.ThesubsequentcombustionofthebiofuelorgasalsoproducesCO2which,ifnotstored,resultsinoverallloweremissionsreduction.
HistoricallyBECCSdeploymenthasbeenslow;therearefewoperatingfacilities
Currently,fivefacilitiesaroundtheworldareactivelyusingBECCStechnologies(Figure2;Appendix1).Collectively,thesefacilitiesarecapturingapproximately1.5milliontonnesperyear(Mtpa)ofCO2.
Theonlylarge-scale2BECCSfacilityistheIllinoisIndustrialCCSfacilitythatcapturesupto1MtpaofCO2.OwnedbyArcherDanielsMidland,thisfacilityproducesethanolfromcornatitsDecaturplant,producingCO2aspartofthefermentationprocess.TheCO2isstoredinadedicatedgeologicalstoragesitedeepunderneaththefacility.
2TheGlobalCCSInstitutedefinitionoflarge-scaleiscapturingandstoringgreaterthan400,000tpaCO2forindustrialfacilities;800,000tpaCO2forpowergeneration.
5
TheremainingfourBECCSfacilitiesoperatingtodayaresmall-scaleethanolproductionplants,usingmostoftheCO2forenhancedoilrecovery(EOR);including:
1.KansasArkalon(USA):200,000tpaofCO2iscompressedandpipedfromanethanolplantinKansastoBookerandFarnsworthOilUnitsinTexasforEOR.
2.BonanzaCCS(USA):100,000tpaofCO2iscompressedandpipedfromanethanolplantinKansastonearbyStewartOilfieldforEOR.
3.HuskyEnergyCO2Injection(Canada):250tonnesperday(tpd)ofCO2iscompressedandtruckedfromanethanolplantinSaskatchewantonearbyLashburnandTangleflagsoilfieldsforEOR;thefieldsareshallow(~500m)andcompriseheavyoil.
4.Farnsworth(USA):Over600,000tonnesofCO2wascompressedfromanethanolplant(Kansas)andfertiliserplant(Texas)andpipedtoFarnsworthoilfieldforEOR.InjectionhasnowceasedaspartofDOE/NETLSouthWestPartnershipsDevelopmentPhasebutcurrentlymonitoringtheinjectedCO2atanongoingEORoperation.
ThreeadditionalprojectsareplanningonBECCS:
1.MikawaPowerPlant(Japan):Theretrofitofa49-megawattunitpowerplantinOmuta(FukuokaPrefecture)toaccept100percentbiomasswithaCO2capturefacility.Thefocusisnowidentifyingasecureoffshorestoragesite.
2.DraxPowerPlant(UK):BiomasspowergenerationpilotinNorthYorkshirewiththepotentialtodevelopCO2captureandstorage
3.NorwegianFull-ChainCCS(Norway):BECCSintegrationintowaste-to-energyandacementplants:
?Klemetsrudwaste-to-energyplant:Planstocapture400,000tpaofCO2.
?NorcemCementplant:Currentlyco-firesupto30percentbiomassandplanstocaptureupto400,000tpaofCO2.
?BothplantswillsendtheirCO2toamulti-userstoragesiteintheNorwegianNorthSea.
SeveralnotablebioenergyfacilitiesutilisetheCO2forcropcultivation(greenhouses).(SeeAppendix1fordetails).
6
Figure2.Bioenergyandcarboncaptureandstoragefacilitiesworldwide(GlobalCCSInstitute,2019)
7
MajorBECCStechnologiesaremature;thepotentialissubstantial
Theindividualtechnologiestoutilisebiomasstoproduceenergyorfuel,aswellasthecapture,transportandstorageofCO2,areallmatureandactiveincommercialfacilitiesaroundtheworld
(Table1)
.
ThereisenormouspotentialforBECCS.Thelargest(intermsofenergyproduction)andmostcommercially-attractiveBECCSapplicationistheproductionofbioethanolandCCS.Thetechnologyisalreadymature.In2017,around68Mtoe3ofbiomass-derivedbiofuelswereproduced;two-thirdswereethanol(IEA,2018).TheUSAproducesoverhalfoftheworld’sbiofuels,butthereareopportunitiesaroundtheworld,includingdevelopingnationsacrossSouthAmerica,Sub-SaharanAfricaandSouthEastAsia.AnincreaseinbiofueluseinthetransportsectorcouldinitiateareductioninCO2emissionsinatraditionallydifficultsectortodecarbonise.
Forglobalpowergeneration,biomasssuppliesabout52Gigawatts(GW)(CSLF,2018).Justthose52GWtodaycouldresultinsignificantCO2reductioniftheCO2iscaptureandstored.TheDraxPowerplantinYorkshire,UK,completedaconversionofthree660megawatts(MW)unitstousebiomass(GlobalCCSInstitute,2019).Asstatedpreviously,theyareundertakingapilotcapturefacilityalso.
PerhapsoneofthelargestBECCSapplicationsiswaste-to-energy(WtE).Burningmunicipalsolidwaste(anotherformofbiomass)togenerateheatandelectricityandcapturingandstoringtheCO2willresultinnegativeemissions4.ThetechnologybehindcapturingtheCO2inthefluegasofaWtEplantissimilartoCO2captureonfossilfuelplants.ThenumbersfromtheCarbonSequestrationLeadershipForum(CSLF)arestaggering:
?Percentofwasteburntforenergy:Japan,70percent;Norway,53percent;UK,26percent;USA,13percent
?NumberofWtEfacilitiespercountry/region:EU,455;China,223;USA,74
Inadditiontothosethreespecificindustries,BECCScouldbeappliedtoindustriesthatrequiresignificantheatandelectricityduringproduction.Forexample,biomasscurrentlysuppliessixpercentoftotalthermalenergyforcementproductionglobally.Asdiscussed,thereiscurrentlyoneplannedBECCSfacilityoncementinNorway.However,theglobalpledgefromcementproducersisareductionof20-25percentofemissionsby2030;equivalentto1Gtcomparedtobusinessasusual(CSLF,2018).CCSistheonlyoptiontodecarboniseforthecementindustry(dePeeetal.,2018);applyingBECCScouldhelpthecementindustrytomeetthatpledge.
3Mtoe,milliontonnesofoilequivalentisaunitofenergy,representingtheamountofenergyreleasedbyburningonetonneofcrudeoil.
4Thenetnegativeemissionsandenergygeneratedbyburningwastedependsonratioofbiogenictonon-biogenicwasteandvariesfromsitetosite.
8
FEEDSTOCK
TRL
Lignocellulose(ForestryandWood)
Large-scalePilottoFull-Commercial
Agricultural
residues
Large-scalePilottoFullCommercial
Sugars/starch
crops
Proof-of-conceptReachedtoFullCommercial
Organicwaste
FullCommercial
Algae
Pre-commercial
Demonstration
Oilcrops/waste
Proof-of-conceptReachedto
FullCommercial
PROCESS
TRL
Combustion
FullCommercial
Gasification
BasicConceptto
First-of-KindCommercial
Fermentation
PrototypePilottoFullCommercial
Anaerobic
digestion
FullCommercial
Extraction
Pre-commercial
Demonstrationto
FullCommercial
Densification
FullCommercial
Pyrolysis
Large-scalePilotto
FullCommercial
Table1.TechnicalReadinessLevel(TRL)rangeorfinallevelreachedofthefundamentalpartsofbioenergyandcarboncaptureandstorage(After:CSLF(2018);NAS(2018)
PRODUCT
TRL
Steam/Heat
FullCommercial
Ethanol
FullCommercial
Biodiesel
FullCommercial
Liquid
hydrocarbon
ConceptValidationto
Pre-commercial
Demonstration
Methane
FullCommercial
Vegetableoil
FullCommercial
Pellets
FullCommercial
Biochar/Charcoal
FullCommercial
9
ThecostofimplementingBECCStechnologyvarieswidely.AreviewoftheentireliteratureonBECCSbyFussetal.(2018)foundacostrangebetweenUS$15-400pertonneofCO2avoided
dependingonthesector
(Table2)
.
Table2.CostofCCSappliedtodifferentsectors(AfterFussetal.(2018);NAS(2018)
BECCS
Sector
Combustion
Ethanol
Pulpandpapermills
Biomassgasification
CO2avoided5cost(US$/tCO2)
88-288
20-175
20-70
30-76
FossilFuel-
Powergeneration(coal)
55-83
firedand
Powergeneration(gas)
43-89
CCS
Naturalgas
Ironandsteel
Cement
20-21
65-77
103-124
MostclimatechangescenariosuseBECCStomeettargetsatgigatonnescale
Climatechangeintegratedassessmentmodels(IAMs)6haveafirmrelianceonCDRbecausethemodelsassumeCDRdeploymentinthefutureislowercostthanreducingcurrentemissions(Anderson&Peters,2016).ThisassumptionmeansdeployingBECCSinthefuture,evenatagigatonneindustrial-scaleisstillcheaperthanreducingemissionstoday.BECCSisthemostwidelyusedCDRtechnologyfromaround2030till2100becausethetechnology:
?Enablesnegativeemissions
?Producesbioenergytooffsetorreplacecurrentfossilfuel-derivedsources
ThemostwidelyusedaverageforBECCScontributionintheliteratureis3.3gigatonneperannum(Gtpa)CO2in2100derivedfromtheIPCC’slastfullClimateChangeAssessmentReportin2014(Smithetal.,2015).
However,thedwindlingcarbonbudgetcreatesever-increasingrelianceonnegativeemissionstomeetclimatechangetargets;especiallyforthetargetthatlimitsglobalwarmingto1.5oCasdetailedintheIPCCSR15report.TheSR15reportidentifiesthecumulativeBECCScontributionofbetween0and1191GtCO2,dependingonthescenariopathway.Thosepathwaysremovebetween0-8GtpaCO2in2030throughBECCS.In2100,theupperrangeofthe1.5oCscenariosis16GtpaofCO2.Figure3showsthegrowingroleofBECCSthroughoutthiscenturyacrossthevariousscenariosoftheIPCCandtheIEA.
ThewidevariationinBECCScontributiontoclimatechangescenariosisduetothedifferentscenarios.Ingeneralterms,scenariosthatassumemoreaggressivereductionsindemandforenergyandemissions-intensiveproducts(e.g.chemicals,cement,steel)requirefewerNETsandlessBECCS.Alternatively,scenariosthatmorecloselyresemblecurrenttrendswith
5SeeLawrence(2017)foradditionaldata.Valuerangerepresentslowesttohighestvaluereported.
6IAMsarecomputermodelsthatintegratephysicalandsocial-economicfactorsrelatedtoclimatechangebasedonassumptions,historicaldataandscenariodesignstoassessvariousoutcomesofpolicy,technologyandclimateimpacts.
10
comparablepatternsofenergyuseanddemandforemissions-intensiveproductsrequiremoreNETsandthereforemoreBECCS(Allenetal.,2018).
Whatisclearisthatbytheendofthecentury,BECCSneedstobedeployedatagigatonneofCO2peryearscale(Figure3).
Figure3.TotalCO2storedfrombioenergyandcarboncaptureandstorageinclimatechangemodelsaccordingtorecentdata(DatafromHuppmannetal.(2018)andIEA(2018).TheSharedSocioeconomicPathways(SSP)areaseriesofsocio-economicpathwaysthatguidefuturedevelopmentintheintegratedassessmentmodels(SeeIIASA(2018)formoreinformationonSSP)
BiomasssupplyisaconstraintonBECCS
Integratedassessmentmodelsusedtodevelopclimatechangescenariosgenerallyassumethatconstraintsonbiomassproduction,suchastheavailabilityofland,waterandfertiliser,donotpreventsufficientbiomasssupply.
AreviewoftheliteratureidentifiesthatthelimitingfactorofBECCSisnottechnology;itisthesupplyofbiomass.
NAS(2018)foundthatinnegativeemissionsscenariosusingBECCS,everygigatonneofCO2storedperyearrequiresapproximately30-40millionhectaresofBECCSfeedstock(NAS,2018).AccordingtotheCSLF(2018)thisequatestoapproximately430-580millionhectaresof
11
landdevotedtobioenergycrops7.TheCSLFestimatedthatusingonlydedicatedbioenergycrops(anefficientmethodtoproducebioenergy)mayrequireuptoone-thirdofarablelandaroundtheworld(CSLF,2018).
Toputthosenumbersintoperspective,accordingtoAndersonandPeters(2016)anareaonetotwotimesthesizeofIndiaisrequiredtomeettheBECCStargetsbasedonpublishedIAMs(Anderson&Peters,2016).
Intermsofspecificincreasesinbiomass,meetingtheupperboundsoftheBECCStargets,accordingtoFajardyandMacDowell(2017)equals:
?Threetimestheworld’stotalcerealproduction
?Twicetheannualworlduseofwaterforagriculture
?Twentytimestheannualuseofnutrients
MeetingtheBECCStargetsrequiresafundamentalrevolutionoftheproductionoffoodandenergycrops.However,modellingaccordingtoFajardyandMacDowell(2017)indicatesthatBECCScanbesustainablewhentargetingthecorrectenergycropsandbestland-usepractices.
BECCSrequiresthewide-scaledeploymentofCCS
Thereisnodoubtthatnegativeemissiontechnologies,mainlyBECCS,arecriticaltoclimatestabilisation.Thereishoweversignificantuncertaintyaboutthescaleofthatcontribution.EspeciallyifthetechnologyisexpectedtomeetgigatonneperyearCO2storagescale.Themostnotableconstraintisthesupplyofsustainablebiomass.
Thepotential,futuredeploymentofBECCSshouldnotbeconsideredasanalternativetoachievingcritical,cross-sectoremissionsreductionstoday.BECCSshouldbeseenasanessentialcomplementtotherequired,wide-scaledeploymentofCCStomeetclimatechangetargets.
7LandrequirementbasedonBECCScontributionof3.3GtpaCO2storedaccordingtoSmithetal.(2015).
12
References
Allenetal.,2018.TechnicalSummary;Globalwarmingof1.5°C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5°C,IPCC.
Anderson,K.&Peters,G.,2016.Thetroublewithnegativeemissions.Science,354(6309),pp.182-183.
CSLF,2018.TechnicalSummaryofBioenergyCarbonCaptureandStorage(BECCS),CarbonSequestrationLeadershipForum.
dePeeetal.,2018.Decarbonizationofindustrialsectors:thenextfrontier,McKinsey&Company.Fajardy,M.&MacDowell,N.,2017.CanBECCSdeliversustainableandresourceefficientnegativeemissions?.EnergyandEnvironmentalScience,Volume10,pp.1389-1426.
Fussetal.,2018.Negativeemissions—Part2:Costs,potentialsandsideeffects.EnvironmentalResearchLetters,13(063002).
GlobalCCSInstitute,2019.CO2REFacilityDatabase.[Online].
Huppmannetal.,2018.IAMC1.5°CScenarioExplorerandDatahostedbyIIASA,Integrated
AssessmentModelingConsortium&InternationalInstituteforAppliedSystemsAnalysis.
IEA,2018.WorldEnergyOutlook,Paris:IEA.
InternationalInstituteforAppliedSystemsAnalysis(IIASA),2018.SSPDatabase(Shared
SocioeconomicPathways)-Version2.0.[Online]
Availableat:https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
[AccessedFebruary2019].
Lawrence,I.,2017.GlobalCostsofcarboncaptureandstorage:2017update,Melbourne:GlobalCCSInstitute.
NationalAcademyofSciences(NAS),2018.NegativeEmissionsTechnologiesandReliableSequestration:AResearchAgenda,Washington,DC:TheNationalAcademiesPress.
NOAA,2018.GlobalGreenhouseGasReferenceNetwork.[Online]
Availableat:/gmd/ccgg/trends/full.html
[AccessedJanuary2018].
Smithetal.,2015.BiophysicalandeconomiclimitstonegativeCO2emissions.NatureClimateChange,Volume6,pp.42-50.
13
APPENDIX1
1
IllinoisIndustrialCarbonCaptureandStorage
ADMcorn-to-ethanolplant
Decatur,Illinois,US
Large
Operating
2017
1,000,000
EthanolProduction
DemonstrationandPilot
Completed
2011-2014
300,000
2
NorwayFullChainCCS
Brevik(NorcemAS),Her?ya(YaraNorgeAS),Klemetsrud(KlemetsrudanleggetAS)
Norway
Largescale
Advanced
development
2023-2024
800,000
CementProduction
(>30%biomass),
Waste-to-energy
(50-60biomass)
CO2CaptureTestFacilityatNorcemBrevikCement,Pilot
Completed
2013
Variable
3
Occidental/WhiteEnergy
HerefordPlantandPlainviewBioenergy
Texas,UnitedStates
Inevaluation
Inevaluation
TBC
600,000-700,000
EthanolProduction
4
RusselCO2injectionplant
ICMethanolplant
Russel,Kansas,
UnitedStates
DemonstrationandPilot
Completed
2003-2005
7,700tonnes(total)
EthanolProduction
5
ArkalonCO2CompressionFacility
ArkalonEnergyethanolplant
Liberal,Kansas,US
DemonstrationandPilot
Operational
2009
290,000
EthanolProduction
6
BonanzaBioEnergyCCUSEOR
BonanzaBioEnergy
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代家居裝飾風(fēng)格與心理健康關(guān)系探討
- 構(gòu)建以服務(wù)功能為導(dǎo)向的綠色生態(tài)環(huán)境教育體系
- 生物醫(yī)藥與健康產(chǎn)業(yè)的投資潛力研究
- 現(xiàn)代化技術(shù)與醫(yī)療中心的高層建筑設(shè)計思考
- 生態(tài)城市建設(shè)中環(huán)境科學(xué)的應(yīng)用研究
- Unit 5 We're family Period 3 (說課稿)-2024-2025學(xué)年外研版(三起)(2024)英語三年級上冊
- 2024-2025學(xué)年高中生物 第四部分 淺嘗現(xiàn)代生物技術(shù)說課稿 浙科版選修1
- 2024-2025學(xué)年高中物理 第四章 電磁感應(yīng) 5 電磁感應(yīng)現(xiàn)象的兩類情況(1)說課稿 新人教版選修3-2
- 9古代科技 耀我中華-獨領(lǐng)風(fēng)騷的古代技術(shù)創(chuàng)造(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治五年級上冊
- 26 手術(shù)臺就是陣地 說課稿-2024-2025學(xué)年統(tǒng)編版語文三年級上冊001
- 2025版茅臺酒出口業(yè)務(wù)代理及銷售合同模板4篇
- 2025年N1叉車司機考試試題(附答案)
- 《醫(yī)院財務(wù)分析報告》課件
- 2024年考研政治試題及答案
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合卷(含答案)
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 2025年初級社會工作者綜合能力全國考試題庫(含答案)
- 2024年濰坊護理職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫附答案
- 《鉗工基本知識》課件
- 第八期:風(fēng)電典型事故案例剖析(二)
- DB63T 2357-2024 危化品常壓儲罐安全管理規(guī)范
評論
0/150
提交評論