版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年山東省青島市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.在等差數(shù)列{an}中,若a3+a17=10,則S19等于()A.65B.75C.85D.95
2.已知a=(1,2),則|a|=()A.1
B.2
C.3
D.
3.5人站成一排,甲、乙兩人必須站兩端的排法種數(shù)是()A.6B.12C.24D.120
4.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),則f(5)等于()A.1B.-1C.0D.2
5.在正方體ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°
6.如下圖所示,轉(zhuǎn)盤上有8個面積相等的扇形,轉(zhuǎn)動轉(zhuǎn)盤,則轉(zhuǎn)盤停止轉(zhuǎn)動時,指針落在陰影部分的概率為()A.1/8B.1/4C.3/8D.1/2
7.已知展開式前三項(xiàng)的系數(shù)成等差數(shù)列,則n為()A.lB.8C.1或8D.都不是
8.函數(shù)1/㏒2(x-2)的定義域是()A.(-∞,2)B.(2,+∞)C.(2,3)U(3,+∞)D.(2,4)U(4,+∞)
9.已知向量a=(1,k),b=(2,2),且a+b與a共線,那么a×b的值為()A.1B.2C.3D.4
10.A.B.C.D.
二、填空題(10題)11.己知三個數(shù)成等差數(shù)列,他們的和為18,平方和是116,則這三個數(shù)從小到大依次是_____.
12.
13.
14.某機(jī)電班共有50名學(xué)生,任選一人是男生的概率為0.4,則這個班的男生共有
名。
15.執(zhí)行如圖所示的流程圖,則輸出的k的值為_______.
16.若長方體的長、寬、高分別為1,2,3,則其對角線長為
。
17.當(dāng)0<x<1時,x(1-x)取最大值時的值為________.
18.
19.的展開式中,x6的系數(shù)是_____.
20.如圖所示的程序框圖中,輸出的S的值為______.
三、計(jì)算題(5題)21.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
22.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
23.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
24.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.
25.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
四、簡答題(10題)26.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
27.如圖,在直三棱柱中,已知(1)證明:AC丄BC;(2)求三棱錐的體積.
28.計(jì)算
29.某商場經(jīng)銷某種商品,顧客可采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是0.6,求3為顧客中至少有1為采用一次性付款的概率。
30.等差數(shù)列的前n項(xiàng)和為Sn,已知a10=30,a20=50。(1)求通項(xiàng)公式an。(2)若Sn=242,求n。
31.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
32.已知是等差數(shù)列的前n項(xiàng)和,若,.求公差d.
33.設(shè)拋物線y2=4x與直線y=2x+b相交A,B于兩點(diǎn),弦AB長,求b的值
34.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值
35.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.
五、解答題(10題)36.為了解某地區(qū)的中小學(xué)生的視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是().A.簡單隨機(jī)抽樣B.按性別分層抽樣C.按學(xué)段分層抽樣D.系統(tǒng)抽樣
37.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).(1)若曲線y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,求a,b的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).
38.已知函數(shù)(1)求f(x)的最小正周期及其最大值;(2)求f(x)的單調(diào)遞增區(qū)間.
39.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.
40.某學(xué)校高二年級一個學(xué)習(xí)興趣小組進(jìn)行社會實(shí)踐活動,決定對某“著名品牌”A系列進(jìn)行市場銷售量調(diào)研,通過對該品牌的A系列一個階段的調(diào)研得知,發(fā)現(xiàn)A系列每日的銷售量f(x)(單位:千克)與銷售價(jià)格x(元/千克)近似滿足關(guān)系式f(x)=a/x-4+10(1-7)2其中4<x<7,a為常數(shù).已知銷售價(jià)格為6元/千克時,每日可售出A系列15千克.(1)求函數(shù)f(x)的解析式;(2)若A系列的成本為4元/千克,試確定銷售價(jià)格x的值,使該商場每日銷售A系列所獲得的利潤最大.
41.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
42.
43.
44.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在的平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A,B的任意一點(diǎn).(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.
45.已知函數(shù)f(x)=sinx+cosx,x∈R.(1)求函數(shù)f(x)的最小正周期和最大值;(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換得到?
六、單選題(0題)46.若f(x)=1/log1/2(2x+1),則f(x)的定義域?yàn)椋ǎ〢.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)
參考答案
1.D
2.D向量的模的計(jì)算.|a|=
3.B
4.C
5.C
6.D本題考查幾何概型概率的計(jì)算。陰影部分的面積為圓面的一半,由幾何概型可知P=1/2。
7.B由題可知,,即n2-9n+8=0,解得n=8,n=-1(舍去)。
8.C函數(shù)的定義.由題知以該函數(shù)的定義域?yàn)椋?,3)∪(3,+∞)
9.D平面向量的線性運(yùn)算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b與a共線.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,
10.C
11.4、6、8
12.-2i
13.π/4
14.20男生人數(shù)為0.4×50=20人
15.5程序框圖的運(yùn)算.由題意,執(zhí)行程序框圖,可得k=1,S=1,S=3,k=2不滿足條件S>16,S=8,k=3不滿足條件S>16,S=16,k=4不滿足條件S>16,S=27,k=5滿足條件S>16,退出循環(huán),輸出k的值為5.故答案為:5.
16.
,
17.1/2均值不等式求最值∵0<
18.(1,2)
19.1890,
20.11/12流程圖的運(yùn)算.分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案為:11/12
21.
22.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
23.
24.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
25.
26.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
27.
28.
29.
30.
31.由已知得:由上可解得
32.根據(jù)等差數(shù)列前n項(xiàng)和公式得解得:d=4
33.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點(diǎn)間距離公式得
34.
35.
36.C
37.(1)f(x)=3x2-3a,∵曲線:y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,
38.
的單調(diào)遞增區(qū)間為[-π/12+kπ,5π/12+kπ]
39.
40.(1)由題意可知,當(dāng)x=6時,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)設(shè)該商場每日銷售A系列所獲得的利潤為h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+1050=0,得x=5或x=7(舍去),所以當(dāng)4<x<5時,h(x)>0,h(x)在(4,5]為增函數(shù);當(dāng)5<x<7,h(x)<0,h(x)在[5,7)為減函數(shù),故當(dāng)x=5時,函數(shù)h(x)在區(qū)間(4,7)內(nèi)有極大值點(diǎn),也是最大值點(diǎn),即x=5時函數(shù)h(x)取得最大值50.所以當(dāng)銷售價(jià)格為5元/千克時,A系列每日所獲得的利潤最大.
41.
42.
43.
44.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB為⊙O的直徑,C為⊙O上異于A、B的-點(diǎn),AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC為直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度觸控技術(shù)培訓(xùn)與認(rèn)證合同4篇
- 2025年收藏品市場交易規(guī)則制定與轉(zhuǎn)讓合同3篇
- 二零二五年度石油化工儲油罐采購合同樣本4篇
- 二零二四三方詢價(jià)采購合同-新能源汽車充電樁安裝與維護(hù)3篇
- A與B雙方合作經(jīng)營合同書2024版版B版
- 二零二四年專業(yè)講師團(tuán)隊(duì)簽約合作合同范本3篇
- 個人與企業(yè)2024年度庫房租賃承包合同3篇
- 2025年新型車庫設(shè)施銷售與技術(shù)支持合同4篇
- 2025年度車輛租賃合同終止協(xié)議范本(含車輛違章處理責(zé)任)4篇
- 2025年度室內(nèi)外裝飾設(shè)計(jì)與施工總承包合同模板4篇
- 部編版六年級下冊道德與法治全冊教案教學(xué)設(shè)計(jì)
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- 二年級數(shù)學(xué)上冊100道口算題大全 (每日一套共26套)
- 物流無人機(jī)垂直起降場選址與建設(shè)規(guī)范
- 肺炎臨床路徑
- 外科手術(shù)鋪巾順序
- 創(chuàng)新者的窘境讀書課件
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計(jì)作業(yè)改革新視角
- 移動商務(wù)內(nèi)容運(yùn)營(吳洪貴)任務(wù)三 APP的品牌建立與價(jià)值提供
- 電子競技范文10篇
- 食堂服務(wù)質(zhì)量控制方案與保障措施
評論
0/150
提交評論