版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年貴州省貴陽市普通高校對口單招數(shù)學自考模擬考試(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.同時擲兩枚質(zhì)地均勻的硬幣,則至少有一枚出現(xiàn)正面的概率是()A.lB.3/4C.1/2D.1/4
2.下列函數(shù)中是偶函數(shù)的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx
3.已知全集U={2,4,6,8},A={2,4},B={4,8},則,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}
4.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
5.設(shè)a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
6.已知集合A={x|x>2},B={x|1<x<3},則A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}
7.直線ax+by+b-a=0與圓x2+y2-x-2=0的位置關(guān)系是()A.相離B.相交C.相切D.無關(guān)
8.已知函數(shù)f(x)=sin(2x+3π/2)(x∈R),下面結(jié)論錯誤的是()A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)是圖象關(guān)于直線x=π/4對稱
D.函數(shù)f(x)在區(qū)間[0,π/2]上是增函數(shù)
9.從1、2、3、4、5五個數(shù)字中任取1數(shù),則抽中偶數(shù)的概率是()A.0B.1/5C.3/5D.2/5
10.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},則(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}
二、填空題(10題)11.若事件A與事件ā互為對立事件,且P(ā)=P(A),則P(ā)=
。
12.
13.某田徑隊有男運動員30人,女運動員10人.用分層抽樣的方法從中抽出一個容量為20的樣本,則抽出的女運動員有______人.
14.
15.已知直線l1:ax-y+2a+1=0和直線l2:2x-(a-l)y+2=0(a∈R)則l1⊥l2的充要條件是a=______.
16.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
17.已知向量a=(1,-1),b(2,x).若A×b=1,則x=______.
18.設(shè)向量a=(x,x+1),b=(1,2),且a⊥b,則x=_______.
19.若△ABC中,∠C=90°,,則=
。
20.已知正實數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
三、計算題(5題)21.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
22.解不等式4<|1-3x|<7
23.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
24.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
25.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
四、簡答題(10題)26.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積
27.等差數(shù)列的前n項和為Sn,已知a10=30,a20=50。(1)求通項公式an。(2)若Sn=242,求n。
28.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。
29.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調(diào)性并加以證明。
30.化簡
31.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點B到平面PCD的距離。
32.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點,弦長為,求b的值。
33.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
34.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.
35.已知橢圓和直線,求當m取何值時,橢圓與直線分別相交、相切、相離。
五、解答題(10題)36.已知a為實數(shù),函數(shù)f(x)=(x2+l)(x+a).若f(-1)=0,求函數(shù):y=f(x)在[-3/2,1]上的最大值和最小值。
37.某化工廠生產(chǎn)的某種化工產(chǎn)品,當年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的總成本:y(萬元)與年產(chǎn)量x(噸)之間的關(guān)系可近似地表示為y=x2/10-30x+400030x+4000.(1)當年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸最低平均成本;(2)若每噸平均出廠價為16萬元,求年生產(chǎn)多少噸時,可獲得最大的年利潤,并求最大年利潤.
38.
39.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.點M為線段AB上的一動點,過點M作直線a丄AB.令A(yù)M=x,記梯形位于直線a左側(cè)部分的面積S=f(x).(1)求函數(shù)f(x)的解析式;(2)作出函數(shù)f(x)的圖象.
40.已知橢圓C的重心在坐標原點,兩個焦點的坐標分別為F1(4,0),F(xiàn)2(-4,0),且橢圓C上任一點到兩焦點的距離和等于10.求:(1)橢圓C的標準方程;(2)設(shè)橢圓C上一點M使得直線F1M與直線F2M垂直,求點M的坐標.
41.已知數(shù)列{an}是首項和公差相等的等差數(shù)列,其前n項和為Sn,且S10=55.(1)求an和Sn(2)設(shè)=bn=1/Sn,數(shù)列{bn}的前n項和為T=n,求Tn的取值范圍.
42.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)
43.
44.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過點(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長.
45.
六、單選題(0題)46.設(shè)為雙曲線的兩個焦點,點P在雙曲線上,且滿足,則的面積是()A.1
B.
C.2
D.
參考答案
1.B獨立事件的概率.同時擲兩枚質(zhì)地均勻的硬幣,可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)共4種結(jié)果,至少有一枚出現(xiàn)正面的結(jié)果有3種,所求的概率是3/4
2.D
3.C
4.B
5.D
6.C集合的運算.由已知條件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}
7.B
8.C三角函數(shù)的性質(zhì).f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期為π,故A正確;易知函數(shù)f(x)是偶函數(shù),B正確;由函數(shù)f(x)=-cos2x的圖象可知,函數(shù)f(x)的圖象關(guān)于直線x=π/4不對稱,C錯誤;由函數(shù)f(x)的圖象易知,函數(shù)f(x)在[0,π/2]上是增函數(shù),D正確,
9.D由于在5個數(shù)中只有兩個偶數(shù),因此抽中偶數(shù)的概率為2/5。
10.B集合補集,交集的運算.因為CuA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.
11.0.5由于兩個事件是對立事件,因此兩者的概率之和為1,又兩個事件的概率相等,因此概率均為0.5.
12.√2
13.5分層抽樣方法.因為男運動員30人,女運動員10人,所以抽出的女運動員有10f(10+30)×20=1/4×20=5人.
14.π/3
15.1/3充要條件及直線的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3
16.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
17.1平面向量的線性運算.由題得A×b=1×2+(-1)×x=2-x=1,x=1。
18.-2/3平面向量的線性運算.由題意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.
19.0-16
20.2基本不等式求最值.由題
21.
22.
23.
24.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
25.
26.
27.
28.
∵μ//v∴(2x+1.4)=(2-x,3)得
29.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)
30.
31.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
32.
33.由已知得:由上可解得
34.∵(1)這條弦與拋物線兩交點
∴
35.∵∴當△>0時,即,相交當△=0時,即,相切當△<0時,即,相離
36.
37.(1)設(shè)每噸的平均成本為W(萬元/噸),ω=y/x=x/10+4000/x-30≥-30=10,當且僅當x/10=4000/x,x=200噸時每噸成本最低為10萬元.(2)設(shè)年利潤為u萬元u=16x-(x2/10-30x+4000)=-x2/10+46x-4000=-1/10(x-230)2+1290,當x=230時,umax=1290,故當年產(chǎn)量為230噸時,最大年利潤為1290萬元.
38.
39.
40.
41.(1)設(shè)數(shù)列{an}的公差為d則a1=d,an=a1+(n-l)d=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融機構(gòu)應(yīng)收賬款評估制度
- 城市基礎(chǔ)設(shè)施專項經(jīng)費審計方案
- 2024年廣東省深圳市中考道德與法治試題卷
- 汽車售后服務(wù)老帶新活動方案
- 文書模板-《智障學生家長來校陪讀協(xié)議書》
- 學校食堂病媒生物防治工作總結(jié)
- 證券、投資客戶經(jīng)理年終個人工作總結(jié)述職報告
- 中小學課外輔導班招生方案
- 婚禮用品購銷合同
- 風險感知視角下公共風險事件負面情緒演化建模與仿真研究
- T-SHNA 0005-2023 成人住院患者腸外營養(yǎng)輸注護理
- 品牌管理 課件 第2章 品牌定位
- 人教版部編五年級道法期中試題及答案
- 2024年四川省達州水務(wù)集團有限公司招聘筆試參考題庫含答案解析
- 電梯應(yīng)急救援演練記錄
- 人教部編版語文七年級上冊第5課《秋天的懷念》表格教案
- 22《為中華之崛起而讀書》 第二課時 課件
- 電除顫并發(fā)癥的預(yù)防及處理
- 2024年首都機場集團公司招聘筆試參考題庫含答案解析
- 《小學數(shù)學計算能力的培養(yǎng)》學習課件
- 取皮植皮護理查房
評論
0/150
提交評論