版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年四川省綿陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.A.
B.
C.
D.
2.
3.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時AB桿處于水平位置,則當(dāng)小環(huán)M運動到圖示位置時(以MO為坐標(biāo)原點,小環(huán)Md運動方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項是()。
A.小環(huán)M的運動方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
4.
5.當(dāng)x→0時,3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價無窮小D.等價無窮小
6.
7.()。A.
B.
C.
D.
8.為二次積分為()。A.
B.
C.
D.
9.
10.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
11.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
12.
13.A.1-cosxB.1+cosxC.2-cosxD.2+cosx
14.
15.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
16.
17.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
18.lim(x2+1)=
x→0
A.3
B.2
C.1
D.0
19.“目標(biāo)的可接受性”可以用()來解釋。
A.公平理論B.雙因素理論C.期望理論D.強(qiáng)化理論
20.
二、填空題(20題)21.設(shè)z=tan(xy-x2),則=______.
22.
23.24.25.26.
27.
28.
29.
30.
31.
32.
33.34.35.
36.
37.過點M0(1,-2,0)且與直線垂直的平面方程為______.
38.
39.
40.
三、計算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.42.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.44.證明:45.46.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
47.求曲線在點(1,3)處的切線方程.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.49.50.求微分方程的通解.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.53.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.54.將f(x)=e-2X展開為x的冪級數(shù).55.
56.57.
58.
59.
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.設(shè)z=z(x,y)由方程e2-xy+y+z=0確定,求dz.
62.
63.
64.
65.
66.
67.68.
69.
70.所圍成的平面區(qū)域。五、高等數(shù)學(xué)(0題)71.已知函數(shù)
,則
=()。
A.1B.一1C.0D.不存在六、解答題(0題)72.(本題滿分8分)
參考答案
1.D
2.D
3.D
4.B解析:
5.D本題考查的知識點為無窮小階的比較。
由于,可知點x→0時3x2+2x3與3x2為等價無窮小,故應(yīng)選D。
6.C
7.C由不定積分基本公式可知
8.A本題考查的知識點為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為
故知應(yīng)選A。
9.B
10.C
11.D本題考查的知識點為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
12.B
13.D
14.B
15.B本題考查的知識點為不定積分換元積分法。
因此選B。
16.C
17.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
18.C
19.C解析:目標(biāo)的可接受性可用期望理論來理解。
20.A
21.本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).
z=tan(xy-x2),
22.-3e-3x-3e-3x
解析:23.本題考查的知識點為不定積分的換元積分法。24.5.
本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).
解法1
解法2
25.e.
本題考查的知識點為極限的運算.
26.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點。
27.
28.y=x3+1
29.
30.(01]31.6.
本題考查的知識點為無窮小量階的比較.
32.
33.
34.(-21)(-2,1)
35.
36.11解析:37.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識點為平面與直線的方程.
由題設(shè)條件可知應(yīng)該利用點法式方程來確定所求平面方程.
所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.
38.2yex+x
39.1
40.41.函數(shù)的定義域為
注意
42.由等價無窮小量的定義可知43.由二重積分物理意義知
44.
45.
46.
47.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.
列表:
說明
49.
50.
51.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
52.
53.
54.
55.
則
56.57.由一階線性微分方程通解公式有
58.
59.
60.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
61.
;本題考查的知識點為求二元隱函數(shù)的偏導(dǎo)數(shù)與全微分.
求二元隱函數(shù)的偏導(dǎo)數(shù)有兩種方法:
(1)利用隱函數(shù)偏導(dǎo)數(shù)公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國緊湊型真空干燥箱行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球高純渦輪分子泵行業(yè)調(diào)研及趨勢分析報告
- 自治物業(yè)管理合同
- 工廠員工勞動合同范本
- 展柜采購合同
- 農(nóng)場承包合同協(xié)議書
- 建筑工程合同的簡述
- 杭州市二手房買賣合同
- 砌體施工勞務(wù)合同
- 2025抵押擔(dān)保借款合同
- 醫(yī)院課件:《食源性疾病知識培訓(xùn)》
- 浙教版七年級數(shù)學(xué)下冊單元測試題及參考答案
- 華為人才發(fā)展與運營管理
- 卓有成效的管理者讀后感3000字
- 七年級下冊-備戰(zhàn)2024年中考?xì)v史總復(fù)習(xí)核心考點與重難點練習(xí)(統(tǒng)部編版)
- 巖土工程勘察服務(wù)投標(biāo)方案(技術(shù)方案)
- 實驗室儀器設(shè)備驗收單
- 新修訂藥品GMP中藥飲片附錄解讀課件
- 蒙特利爾認(rèn)知評估量表北京版
- 領(lǐng)導(dǎo)干部個人有關(guān)事項報告表(模板)
- GB/T 7631.18-2017潤滑劑、工業(yè)用油和有關(guān)產(chǎn)品(L類)的分類第18部分:Y組(其他應(yīng)用)
評論
0/150
提交評論