




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年安徽省六安市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(22題)1.若a0.6<a<a0.4,則a的取值范圍為()</aA.a>1B.0<a<1C.a>0D.無法確定
2.函數(shù)和在同一直角坐標(biāo)系內(nèi)的圖像可以是()A.
B.
C.
D.
3.A.15,5,25B.15,15,15C.10,5,30D.15,10,20
4.執(zhí)行如圖所示的程序,若輸人的實(shí)數(shù)x=4,則輸出結(jié)果為()A.4B.3C.2D.1/4
5.若sinα=-3cosα,則tanα=()A.-3B.3C.-1D.1
6.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.
B.
C.
D.
7.2與18的等比中項(xiàng)是()A.36B.±36C.6D.±6
8.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),則f(5)等于()A.1B.-1C.0D.2
9.A.(5,10)B.(-5,-10)C.(10,5)D.(-10,-5)
10.已知向量a=(1,2),b=(3,1),則b-a=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)
11.A.7.5
B.C.6
12.A.B.C.D.
13.函數(shù)在(-,3)上單調(diào)遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8
14.三角函數(shù)y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π
15.某學(xué)校為了了解三年級、六年級、九年級這三個年級之間的學(xué)生視力是否存在顯著差異,擬從這三個年級中按人數(shù)比例抽取部分學(xué)生進(jìn)行調(diào)查,則最合理的抽樣方法是()A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機(jī)數(shù)法
16.A.6B.7C.8D.9
17.在空間中垂直于同一條直線的兩條直線一定是()A.平行B.相交C.異面D.前三種情況都有可能
18.某人從一魚池中捕得120條魚,做了記號之后,再放回池中,經(jīng)過一定的時間后,再從該魚池中捕得100條魚,結(jié)果發(fā)現(xiàn)有記號的魚為10條(假定魚池中魚的數(shù)量既不減少,也不增加),則魚池中大約有魚()A.120條B.1000條C.130條D.1200條
19.已知a=(4,-4),點(diǎn)A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
20.過點(diǎn)M(2,1)的直線與x軸交與P點(diǎn),與y軸交與交與Q點(diǎn),且|MP|=|MQ|,則此直線方程為()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0
21.A.
B.
C.
22.設(shè)平面向量a(3,5),b(-2,1),則a-2b的坐標(biāo)是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
二、填空題(10題)23.等比數(shù)列中,a2=3,a6=6,則a4=_____.
24.等差數(shù)列中,a2=2,a6=18,則S8=_____.
25.當(dāng)0<x<1時,x(1-x)取最大值時的值為________.
26.
27.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.
28.一個口袋中裝有大小相同、質(zhì)地均勻的兩個紅球和兩個白球,從中任意取出兩個,則這兩個球顏色相同的概率是______.
29.函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為_____.
30.二項(xiàng)式的展開式中常數(shù)項(xiàng)等于_____.
31.若log2x=1,則x=_____.
32.若長方體的長、寬、高分別為1,2,3,則其對角線長為
。
三、計算題(10題)33.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.
34.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
35.解不等式4<|1-3x|<7
36.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
37.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.
38.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
39.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
40.己知直線l與直線y=2x+5平行,且直線l過點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
41.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
42.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
四、簡答題(10題)43.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
44.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項(xiàng)公式;(2)令bn=2n求數(shù)列{bn}的前n項(xiàng)和Sn.
45.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程
46.設(shè)等差數(shù)列的前n項(xiàng)數(shù)和為Sn,已知的通項(xiàng)公式及它的前n項(xiàng)和Tn.
47.已知拋物線的焦點(diǎn)到準(zhǔn)線L的距離為2。(1)求拋物線的方程及焦點(diǎn)下的坐標(biāo)。(2)過點(diǎn)P(4,0)的直線交拋物線AB兩點(diǎn),求的值。
48.據(jù)調(diào)查,某類產(chǎn)品一個月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產(chǎn)品一個月內(nèi)被投訴不超過1次的概率
49.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
50.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實(shí)數(shù)x。
51.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值
52.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個根,且a4>a1,求S8的值
五、解答題(10題)53.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.
54.證明上是增函數(shù)
55.
56.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在的平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A,B的任意一點(diǎn).(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.
57.已知直線經(jīng)過橢圓C:x2/a2+y2/b2=1(a>b>0)的一個頂點(diǎn)B和一個焦點(diǎn)F.(1)求橢圓的離心率;(2)設(shè)P是橢圓C上動點(diǎn),求|PF|-|PB|的取值范圍,并求|PF|-|PB||取最小值時點(diǎn)P的坐標(biāo).
58.已知函數(shù)f(x)=x3-3x2-9x+1.(1)求函數(shù)f(x)的單調(diào)區(qū)間.(2)若f(x)-2a+1≥0對Vx∈[-2,4]恒成立,求實(shí)數(shù)a的取值范圍.
59.求函數(shù)f(x)=x3-3x2-9x+5的單調(diào)區(qū)間,極值.
60.已知數(shù)列{an}是首項(xiàng)和公差相等的等差數(shù)列,其前n項(xiàng)和為Sn,且S10=55.(1)求an和Sn(2)設(shè)=bn=1/Sn,數(shù)列{bn}的前n項(xiàng)和為T=n,求Tn的取值范圍.
61.已知橢圓C的對稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1和F2,且|F1F2|=2,點(diǎn)(1,3/2)在該橢圓上.(1)求橢圓C的方程;(2)過F1的直線L與橢圓C相交于A,B兩點(diǎn),以F2為圓心為半徑的圓與直線L相切,求△AF2B的面積.
62.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
六、單選題(0題)63.一元二次不等式x2+x-6<0的解集為A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)
參考答案
1.B已知函數(shù)是指數(shù)函數(shù),當(dāng)a在(0,1)范圍內(nèi)時函數(shù)單調(diào)遞減,所以選B。
2.D
3.D
4.C三角函數(shù)的運(yùn)算∵x=4>1,∴y=㏒24=2
5.A同角三角函數(shù)的變換.若cosα=0,則sinα=0,顯然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.
6.B三角函數(shù)的誘導(dǎo)公式化簡sin(5π/2+α)=sin(2π+π/2+α)=sin(π/2+α)=cosα=1/5,因α是第四象限角,所以sinα
7.D
8.C
9.B
10.B平面向量的線性運(yùn)算.由于a=(1,2),b=(3,1),于是b-a=(3,1)-(1,2)=(2,-1)
11.B
12.B
13.A
14.A
15.C為了解三年級、六年級、九年級這三個年級之間的學(xué)生視力是否存在顯著差異,這種方式具有代表性,比較合理的抽樣方法是分層抽樣。
16.D
17.D
18.D抽樣分布.設(shè)魚池中大約有魚M條,則120/M=10/100解得M=1200
19.D由,則兩者平行。
20.D
21.C
22.A由題可知,a-2b=(3,5)-2(-2,1)=(7,3)。
23.
,由等比數(shù)列性質(zhì)可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
24.96,
25.1/2均值不等式求最值∵0<
26.-3由于cos(x+π/6)的最小值為-1,所以函數(shù)f(x)的最小值為-3.
27.-3或7,
28.1/3古典概型及概率計算公式.兩個紅球的編號為1,2兩個白球的編號為3,4,任取兩個的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),兩球顏色相同的事件有(1,2)和(3,4),故兩球顏色相同概率為2/6=1/3
29.1.三角函數(shù)最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函數(shù)f(x)==sin(x+φ)-2sinφcosx的最大值為1.
30.15,由二項(xiàng)展開式的通項(xiàng)可得,令12-3r=0,得r=4,所以常數(shù)項(xiàng)為。
31.2.指數(shù)式與對數(shù)式的轉(zhuǎn)化及其計算.指數(shù)式轉(zhuǎn)化為對數(shù)式x=2.
32.
,
33.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
34.
35.
36.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
37.
38.
39.
40.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時,y=-4∴直線l在y軸上的截距為-4
41.
42.
43.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
44.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴數(shù)列為首項(xiàng)b1=32,q=16的等比數(shù)列
45.
46.(1)∵
∴又∵等差數(shù)列∴∴(2)
47.(1)拋物線焦點(diǎn)F(,0),準(zhǔn)線L:x=-,∴焦點(diǎn)到準(zhǔn)線的距離p=2∴拋物線的方程為y2=4x,焦點(diǎn)為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴
48.設(shè)事件A表示“一個月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個月內(nèi)被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
49.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
50.
∵μ//v∴(2x+1.4)=(2-x,3)得
51.
52.方程的兩個根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
53.
54.證明:任取且x1<x2∴即∴在是增函數(shù)
55.
56.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45131-2025鍋爐用水和冷卻水分析方法磷酸鹽、氯化物、硅酸鹽、總堿度、酚酞堿度、硬度和鐵的測定基于間斷分析系統(tǒng)的分光光度法
- 【正版授權(quán)】 ISO TS 81001-2-1:2025 EN Health software and health IT systems safety,effectiveness and security - Part 2-1: Coordination - Guidance for the use of assurance cases for safe
- 新能源智能電網(wǎng)項(xiàng)目合作框架協(xié)議
- 電子廢物回收處理項(xiàng)目合同
- 水管采購合同
- 熱泵供暖設(shè)備采購合同
- 重慶簡單房屋租賃合同(31篇)
- 電子商務(wù)平臺賣家權(quán)益保護(hù)協(xié)議
- 自愿送養(yǎng)收養(yǎng)協(xié)議書
- 年度活動策劃與執(zhí)行工作方案
- 運(yùn)動會活動流程中的醫(yī)療安全保障措施
- 2025公司員工試用期合同(范本)
- 第十章皮膚軟組織擴(kuò)張術(shù)醫(yī)學(xué)美容教研室袁曉野講解
- 2025年冷鏈物流產(chǎn)品配送及倉儲管理承包合同3篇
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 浙教版2023小學(xué)信息技術(shù)六年級上冊《人機(jī)對話的實(shí)現(xiàn)》說課稿及反思
- 2025年山東出版集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 【開題報告】中小學(xué)校鑄牢中華民族共同體意識教育研究
- 2022+ADA/EASD共識報告:2型糖尿病高血糖的管理
- 2024-2025學(xué)年云南省大理州七年級(上)期末英語試卷(含答案)
- 中國遠(yuǎn)洋海運(yùn)集團(tuán)招聘筆試沖刺題2025
評論
0/150
提交評論