版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.我國古代數(shù)學著作《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何?!贝笾乱馑际牵骸坝靡桓K子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設繩子長尺,木條長尺,根據(jù)題意所列方程組正確的是()A. B. C. D.2.-2的倒數(shù)是()A.-2 B. C. D.23.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機摸出一個球,摸出的球是紅球的概率是()A. B. C. D.4.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE5.用鋁片做聽裝飲料瓶,現(xiàn)有100張鋁片,每張鋁片可制瓶身16個或制瓶底45個,一個瓶身和兩個瓶底可配成一套,設用張鋁片制作瓶身,則可列方程()A. B.C. D.6.的相反數(shù)是A. B.2 C. D.7.用加減法解方程組時,若要求消去,則應()A. B. C. D.8.如圖是由5個相同的小正方體組成的立體圖形,這個立體圖形的俯視圖是()A. B. C. D.9.6的絕對值是()A.6 B.﹣6 C. D.10.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π11.對假命題“任何一個角的補角都不小于這個角”舉反例,正確的反例是()A.∠α=60°,∠α的補角∠β=120°,∠β>∠αB.∠α=90°,∠α的補角∠β=90°,∠β=∠αC.∠α=100°,∠α的補角∠β=80°,∠β<∠αD.兩個角互為鄰補角12.下列關于統(tǒng)計與概率的知識說法正確的是()A.武大靖在2018年平昌冬奧會短道速滑500米項目上獲得金牌是必然事件B.檢測100只燈泡的質(zhì)量情況適宜采用抽樣調(diào)查C.了解北京市人均月收入的大致情況,適宜采用全面普查D.甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的平均數(shù)大于乙組數(shù)據(jù)的平均數(shù)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知點E是菱形ABCD的AD邊上的一點,連接BE、CE,M、N分別是BE、CE的中點,連接MN,若∠A=60°,AB=4,則四邊形BCNM的面積為_____.14.若反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個交點為(m,﹣4),則這個反比例函數(shù)的表達式為_____.15.化簡÷=_____.16.在平面直角坐標系中,點A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標為_______.
.17.若分式有意義,則實數(shù)x的取值范圍是_______.18.如圖,把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?20.(6分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.21.(6分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.22.(8分)如圖,在⊿中,,于,.⑴.求的長;⑵.求的長.23.(8分)綜合與探究如圖1,平面直角坐標系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標;(2)設點F的橫坐標為x(﹣4<x<4),解決下列問題:①當點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標;若不存在,說明理由.24.(10分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東方向上的B處.求此時輪船所在的B處與燈塔Р的距離.(結果保留根號)25.(10分)先化簡代數(shù)式:,再代入一個你喜歡的數(shù)求值.26.(12分)如圖所示,在中,,用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)連接AP當為多少度時,AP平分.27.(12分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
本題的等量關系是:繩長-木長=4.5;木長-×繩長=1,據(jù)此列方程組即可求解.【詳解】設繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.2、B【解析】
根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握3、B【解析】袋中一共7個球,摸到的球有7種可能,而且機會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.4、C【解析】
根據(jù)相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.5、C【解析】
設用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個,瓶底個,再根據(jù)一個瓶身和兩個瓶底可配成一套,即可列出方程.【詳解】設用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【點睛】此題主要考查一元一次方程的應用,解題的關鍵是根據(jù)題意找到等量關系.6、B【解析】
根據(jù)相反數(shù)的性質(zhì)可得結果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關鍵.7、C【解析】
利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應①×5+②×3,
故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.8、C【解析】
從上面看共有2行,上面一行有3個正方形,第二行中間有一個正方形,故選C.9、A【解析】試題分析:1是正數(shù),絕對值是它本身1.故選A.考點:絕對值.10、A【解析】
利用切線的性質(zhì)得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.11、C【解析】熟記反證法的步驟,然后進行判斷即可.
解答:解:舉反例應該是證明原命題不正確,即要舉出不符合敘述的情況;
A、∠α的補角∠β>∠α,符合假命題的結論,故A錯誤;
B、∠α的補角∠β=∠α,符合假命題的結論,故B錯誤;
C、∠α的補角∠β<∠α,與假命題結論相反,故C正確;
D、由于無法說明兩角具體的大小關系,故D錯誤.
故選C.12、B【解析】
根據(jù)事件發(fā)生的可能性的大小,可判斷A,根據(jù)調(diào)查事物的特點,可判斷B;根據(jù)調(diào)查事物的特點,可判斷C;根據(jù)方差的性質(zhì),可判斷D.【詳解】解:A、武大靖在2018年平昌冬奧會短道速滑500米項目上可能獲得獲得金牌,也可能不獲得金牌,是隨機事件,故A說法不正確;B、燈泡的調(diào)查具有破壞性,只能適合抽樣調(diào)查,故檢測100只燈泡的質(zhì)量情況適宜采用抽樣調(diào)查,故B符合題意;C、了解北京市人均月收入的大致情況,調(diào)查范圍廣適合抽樣調(diào)查,故C說法錯誤;D、甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的波動比乙組數(shù)據(jù)的波動小,不能說明平均數(shù)大于乙組數(shù)據(jù)的平均數(shù),故D說法錯誤;故選B.【點睛】本題考查隨機事件及方差,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.方差越小波動越?。?、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】
如圖,連接BD.首先證明△BCD是等邊三角形,推出S△EBC=S△DBC=×42=4,再證明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解決問題.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等邊三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S陰=4-=3,故答案為3.【點睛】本題考查相似三角形的判定和性質(zhì)、三角形的中位線定理、菱形的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.14、y=﹣.【解析】
把交點坐標代入兩個解析式組成方程組,解方程組求得k,即可求得反比例函數(shù)的解析式.【詳解】解:∵反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個交點為(m,﹣4),∴,解得k=﹣5,∴反比例函數(shù)的表達式為y=﹣,故答案為y=﹣.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)圖象上點的坐標特征得出方程組是解題的關鍵.15、x+1【解析】分析:根據(jù)根式的除法,先因式分解后,把除法化為乘法,再約分即可.詳解:解:原式=÷=?(x+1)(x﹣1)=x+1,故答案為x+1.點睛:此題主要考查了分式的運算,關鍵是要把除法問題轉(zhuǎn)化為乘法運算即可,注意分子分母的因式分解.16、A3()【解析】
設直線y=與x軸的交點為G,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據(jù)等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標.【詳解】設直線y=與x軸的交點為G,
令y=0可解得x=-4,
∴G點坐標為(-4,0),
∴OG=4,
如圖1,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,
∵△A1B1O為等腰直角三角形,
∴A1D=OD,
又∵點A1在直線y=x+上,
∴=,即=,解得A1D=1=()0,
∴A1(1,1),OB1=2,
同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,
∴A2(,),OB2=5,
同理可求得A3F==()2,則OF=5+=,
∴A3(,);故答案為(,)【點睛】本題主要考查等腰三角形的性質(zhì)和直線上點的坐標特點,根據(jù)題意找到點的坐標的變化規(guī)律是解題的關鍵,注意觀察數(shù)據(jù)的變化.17、【解析】由于分式的分母不能為2,x-1在分母上,因此x-1≠2,解得x.解:∵分式有意義,∴x-1≠2,即x≠1.故答案為x≠1.本題主要考查分式有意義的條件:分式有意義,分母不能為2.18、1【解析】
由旋轉(zhuǎn)的性質(zhì)可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質(zhì)可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,B型公交車2輛費用最少,最少費用為1100萬元.【解析】
詳解:(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得x+2y=解得x=答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因為a是整數(shù),所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購買A型公交車6輛,B型公交車4輛;②購買A型公交車7輛,B型公交車3輛;③購買A型公交車8輛,B型公交車2輛.(3)①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;故購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應用,注意理解題意,找出題目蘊含的數(shù)量關系,列出方程組或不等式組解決問題.20、(1)-7;(2),.【解析】
(1)原式第一項利用算術平方根定義計算,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結果;
(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,約分得到最簡結果,利用非負數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點睛】本題考查了實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值,解題的關鍵是熟練的掌握實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值的運用.21、(1);(2)見解析;(3)【解析】
(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據(jù)相似三角形的性質(zhì)可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設AD=t,則BO=AO=4t,OD=3t,根據(jù)勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【點睛】本題考查了相似三角形的判定與性質(zhì),準確作出輔助線,構造相似三角形是解決本題的關鍵,也是求解的難點.22、(1)25(2)12【解析】整體分析:(1)用勾股定理求斜邊AB的長;(2)用三角形的面積等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.23、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標為(﹣3,0)或(﹣3,).【解析】
(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標代入表達式求出y的值即可;(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標,當點G與點D重合時,可得G點坐標,GF∥x軸,故可得F的縱坐標,再將y=﹣2代入拋物線的解析式求解可得點F的坐標,再根據(jù)m=FG即可得m的值;②設點F與點G的坐標,根據(jù)m=FG列出方程化簡可得出m的二次函數(shù)關系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當點F在x軸的左側時與右側時的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設出F,G點的坐標,再根據(jù)兩點關系列出等式化簡求解即可得F的坐標.【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標為(﹣4,﹣6).(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當點G與點D重合時,G的坐標為(0,﹣2).∵GF∥x軸,∴F的縱坐標為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標為(﹣+3,﹣2).∴m=FG=﹣3.②設點F的坐標為(x,﹣x3+x+2),則點G的坐標為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當x=0時,m的最大值為4.(2)當點F在x軸的左側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標為(﹣3,0).當點F在x軸的右側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標為(﹣3,).綜上所述,點F的坐標為(﹣3,0)或(﹣3,).【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是熟練的掌握二次函數(shù)的應用.24、海里【解析】
過點P作,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB.【詳解】解:如圖,過點P作,垂足為點C.∴,,海里.在中,,∴(海里).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 涂料購買合同范本
- 2024年林地合作經(jīng)營合同書
- 場地借用協(xié)議
- 標準房屋抵押合同范本
- 成都市家庭清潔工程合同示范
- 2024年空心磚購銷合同
- 車輛買賣合同范本經(jīng)典版
- 廣東省房產(chǎn)租賃協(xié)議模板
- 2024年招投標的實習報告
- 大學生臨時就業(yè)協(xié)議書
- 建筑防水工程技術規(guī)程DBJ-T 15-19-2020
- ESG系列研究報告:可持續(xù)航空燃料(SAF)
- 2024中國電力建設集團(股份)公司總部部門內(nèi)設機構負責人及以下崗位人員招聘筆試參考題庫含答案解析
- 13區(qū)域分析與區(qū)域規(guī)劃(第三版)電子教案(第十三章)
- (2024年)人體生理解剖學圖解
- 質(zhì)量改進計劃及實施方案
- 2024年山東青島城投金融控股集團有限公司招聘筆試參考題庫含答案解析
- 人生觀的主要內(nèi)容講解
- 醫(yī)院培訓課件:《RCA-根本原因分析》
- 苯妥英鋅的合成1(修改)
- 信創(chuàng)醫(yī)療工作總結
評論
0/150
提交評論