版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.112.已知為虛數(shù)單位,若復數(shù),則A. B.C. D.3.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.4.若實數(shù)x,y滿足條件,目標函數(shù),則z的最大值為()A. B.1 C.2 D.05.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]6.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.37.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.28.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.9.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種10.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題11.設為虛數(shù)單位,復數(shù),則實數(shù)的值是()A.1 B.-1 C.0 D.212.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質(zhì)數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.14.已知數(shù)列的前項和公式為,則數(shù)列的通項公式為___.15.已知數(shù)列的各項均為正數(shù),滿足,.,若是等比數(shù)列,數(shù)列的通項公式_______.16.如圖,在正四棱柱中,P是側(cè)棱上一點,且.設三棱錐的體積為,正四棱柱的體積為V,則的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若關(guān)于的不等式的整數(shù)解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數(shù)的取值范圍.18.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.19.(12分)某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.20.(12分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.21.(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設,為的前n項和,求證:.22.(10分)設函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個極值點,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎題目.2、B【解析】
因為,所以,故選B.3、D【解析】
可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.4、C【解析】
畫出可行域和目標函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標函數(shù)如圖:當時函數(shù)取最大值為故答案選C【點睛】求線性目標函數(shù)的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最??;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.5、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.6、A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動線段的長度轉(zhuǎn)化為到準線或焦點的距離來求解.7、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.8、B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應用,屬于基礎題.9、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.10、D【解析】
舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案.【詳解】當時,故命題為假命題;記f(x)=ex﹣x的導數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎題.11、A【解析】
根據(jù)復數(shù)的乘法運算化簡,由復數(shù)的意義即可求得的值.【詳解】復數(shù),由復數(shù)乘法運算化簡可得,所以由復數(shù)定義可知,解得,故選:A.【點睛】本題考查了復數(shù)的乘法運算,復數(shù)的意義,屬于基礎題.12、A【解析】
首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結(jié)果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【點睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.14、【解析】
由題意,根據(jù)數(shù)列的通項與前n項和之間的關(guān)系,即可求得數(shù)列的通項公式.【詳解】由題意,可知當時,;當時,.又因為不滿足,所以.【點睛】本題主要考查了利用數(shù)列的通項與前n項和之間的關(guān)系求解數(shù)列的通項公式,其中解答中熟記數(shù)列的通項與前n項和之間的關(guān)系,合理準確推導是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】
利用遞推關(guān)系,等比數(shù)列的通項公式即可求得結(jié)果.【詳解】因為,所以,因為是等比數(shù)列,所以數(shù)列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數(shù)列,所以,故答案為:.【點睛】該題考查的是有關(guān)數(shù)列的問題,涉及到的知識點有根據(jù)遞推公式求數(shù)列的通項公式,屬于簡單題目.16、【解析】
設正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計算可得.【詳解】解:設正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求解不等式,結(jié)合整數(shù)解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉(zhuǎn)化,使得成立為,利用不等式性質(zhì),求解二次函數(shù)最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數(shù)的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉(zhuǎn)化劃歸,分類討論,數(shù)學運算的能力,屬于中檔題.18、(1)見解析;(2)【解析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng)和向量法的合理運用,屬于中檔題.19、(1),眾數(shù)為150;(2);(3)【解析】
(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個開學季內(nèi)市場需求量的眾數(shù)和平均數(shù);(2)由已知條件推導出當時,,當時,,由此能將表示為的函數(shù);(3)利用頻率分布直方圖能求出利潤不少于4800元的概率.【詳解】(1)由直方圖可估計需求量的眾數(shù)為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計需求量的平均數(shù)為:(2)當時,當時,∴(3)由(2)知當時,當時,得∴開學季利潤不少于4800元的需求量為由頻率分布直方圖可所求概率【點睛】本題考查頻率分布直方圖的應用,考查函數(shù)解析式的求法,考查概率的估計,是中檔題,解題時要注意頻率分布直方圖的合理運用.20、(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點坐標,可得的值;(2)可得曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版數(shù)據(jù)中心保安服務終止與數(shù)據(jù)安全保護合同
- 2025年度毛紗買賣合同棉紗原材料供應協(xié)議4篇
- 2025年度毛毯產(chǎn)品售后維修服務合同4篇
- 專項建設工程咨詢協(xié)作協(xié)議2024版樣本版B版
- 二零二五版保密技術(shù)研發(fā)合作協(xié)議范本6篇
- 二零二四年幼兒園及學校衛(wèi)生保潔托管協(xié)議3篇
- 2025年度網(wǎng)絡安全防護解決方案設計與實施服務合同4篇
- 7 小動物找媽媽 說課稿-2023-2024學年科學一年級下冊青島版
- 第六節(jié) 跨學科實踐:制作簡易升降機(說課稿)2024-2025學年北師大八年級物理下冊
- Unit 1 Hello(說課稿)-2024-2025學年譯林版(三起)英語三年級上冊
- 寒潮雨雪應急預案范文(2篇)
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳海報
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓計劃
- 南京工業(yè)大學浦江學院《線性代數(shù)(理工)》2022-2023學年第一學期期末試卷
- 2024版機床維護保養(yǎng)服務合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認定》
- 工程融資分紅合同范例
- 2024國家安全員資格考試題庫加解析答案
評論
0/150
提交評論