江蘇省蘇州市胥江實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第1頁
江蘇省蘇州市胥江實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第2頁
江蘇省蘇州市胥江實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第3頁
江蘇省蘇州市胥江實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第4頁
江蘇省蘇州市胥江實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.設(shè),,是拋物線上的三點(diǎn),則,,的大小關(guān)系為()A. B. C. D.2.下列圖形:①國旗上的五角星,②有一個角為60°的等腰三角形,③一個半徑為π的圓,④兩條對角線互相垂直平分的四邊形,⑤函數(shù)y=的圖象,其中既是軸對稱又是中心對稱的圖形有()A.有1個 B.有2個 C.有3個 D.有4個3.已知,則的值是()A. B.2 C. D.4.從,0,π,,6這五個數(shù)中隨機(jī)抽取一個數(shù),抽到有理數(shù)的概率是()A. B. C. D.5.下列根式是最簡二次根式的是()A. B. C. D.6.某經(jīng)濟(jì)技術(shù)開發(fā)區(qū)今年一月份工業(yè)產(chǎn)值達(dá)50億元,且第一季度的產(chǎn)值為175億元.若設(shè)平均每月的增長率為x,根據(jù)題意可列方程為()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1757.順次連接邊長為的正六邊形的不相鄰的三邊的中點(diǎn),又形成一個新的正三角形,則這個新的正三角形的面積等于()A. B. C. D.8.如圖,已知,且,則()A. B. C. D.9.如圖,E為矩形ABCD的CD邊延長線上一點(diǎn),BE交AD于G,AF⊥BE于F,圖中相似三角形的對數(shù)是()A.5 B.7 C.8 D.1010.如圖,已知⊙O的直徑AB⊥弦CD于點(diǎn)E,下列結(jié)論中一定正確的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°二、填空題(每小題3分,共24分)11.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.12.如圖,在菱形ABCD中,AE⊥BC,E為垂足,若cosB=,EC=2,P是AB邊上的一個動點(diǎn),則線段PE的長度的最小值是________.13.在一個不透明的袋子中,裝有1個紅球和2個白球,這些球除顏色外其余都相同。攪勻后從中隨機(jī)一次摸出兩個球,則摸到的兩個球都是白球的概率是____.14.如圖,在菱形ABCD中,E是BC邊上的點(diǎn),AE交BD于點(diǎn)F,若EC=2BE,則的值是.15.學(xué)校門口的欄桿如圖所示,欄桿從水平位置BD繞O點(diǎn)旋轉(zhuǎn)到AC位置,已知AB⊥BD,CD⊥BD,垂足分別為B,D,AO=4m,AB=1.6m,CO=1m,則欄桿C端應(yīng)下降的垂直距離CD為__________.16.一組數(shù)據(jù),,,,的眾數(shù)是,則=_________.17.已知x=1是一元二次方程x2+mx+n=0的一個根,則m2+2mn+n2的值為_____.18.“蜀南竹海位于宜賓市境內(nèi)”是_______事件;(填“確定”或“隨機(jī)”)三、解答題(共66分)19.(10分)解方程:x2-7x-18=0.20.(6分)已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)得到△A′B′C,記旋轉(zhuǎn)角為α,當(dāng)90°<α<180°時(shí),作A′D⊥AC,垂足為D,A′D與B′C交于點(diǎn)E.(1)如圖1,當(dāng)∠CA′D=15°時(shí),作∠A′EC的平分線EF交BC于點(diǎn)F.①寫出旋轉(zhuǎn)角α的度數(shù);②求證:EA′+EC=EF;(2)如圖2,在(1)的條件下,設(shè)P是直線A′D上的一個動點(diǎn),連接PA,PF,若AB=,求線段PA+PF的最小值.(結(jié)果保留根號)21.(6分)為改善生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,某村規(guī)劃將一塊長18米,寬10米的矩形場地建設(shè)成綠化廣場,如圖,內(nèi)部修建三條寬相等的小路,其中一條路與廣場的長平行,另兩條路與廣場的寬平行,其余區(qū)域種植綠化,使綠化區(qū)域的面積為廣場總面積的80%.(1)求該廣場綠化區(qū)域的面積;(2)求廣場中間小路的寬.22.(8分)將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖1擺放,點(diǎn)D為AB邊的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過點(diǎn)C,且BC=2.(1)求證:△ADC∽△APD;(2)求△APD的面積;(3)如圖2,將△DEF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角α(0°<α<60°),此時(shí)的等腰直角三角尺記為△DE′F′,DE′交AC于點(diǎn)M,DF′交BC于點(diǎn)N,試判斷PMCN的值是否隨著α的變化而變化?如果不變,請求出PM23.(8分)已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D,(1)求此二次函數(shù)解析式;(2)連接DC、BC、DB,求證:△BCD是直角三角形;(3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.24.(8分)如圖,與關(guān)于O點(diǎn)中心對稱,點(diǎn)E、F在線段AC上,且AF=CE.求證:FD=BE.25.(10分)在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式——利用函數(shù)圖象研其性質(zhì)——運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程.如圖,在平面直角坐標(biāo)系中己經(jīng)繪制了一條直線.另一函數(shù)與的函數(shù)關(guān)系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直線的解析式;(2)請根據(jù)列表中的數(shù)據(jù),繪制出函數(shù)的近似圖像;(3)請根據(jù)所學(xué)知識并結(jié)合上述信息擬合出函數(shù)的解折式,并求出與的交點(diǎn)坐標(biāo).26.(10分)如圖,在△ABC中,∠A為鈍角,AB=25,AC=39,,求tanC和BC的長.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)二次函數(shù)的性質(zhì)得到拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,然后根據(jù)三個點(diǎn)離對稱軸的遠(yuǎn)近判斷函數(shù)值的大小.【詳解】解:∵拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,而A(2,y1)離直線x=﹣1的距離最遠(yuǎn),C(﹣2,y3)點(diǎn)離直線x=1最近,∴.故選A.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式.也考查了二次函數(shù)的性質(zhì).2、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義可得答案.【詳解】解:①國旗上的五角星,是軸對稱圖形,不是中心對稱圖形;②有一個角為60°的等腰三角形,是軸對稱圖形,是中心對稱圖形;③一個半徑為π的圓,是軸對稱圖形,是中心對稱圖形;④兩條對角線互相垂直平分的四邊形,是軸對稱圖形,是中心對稱圖形;⑤函數(shù)y=的圖象,不是軸對稱圖形,是中心對稱圖形;既是軸對稱又是中心對稱的圖形有3個,故選:C.【點(diǎn)睛】此題主要考查了軸對稱圖形和中心對稱圖形,以及反比例函數(shù)圖象和線段垂直平分線,關(guān)鍵是掌握軸對稱圖形和中心對稱圖形定義.3、C【分析】設(shè)x=5k(k≠0),y=2k(k≠0),代入求值即可.【詳解】解:∵∴x=5k(k≠0),y=2k(k≠0)∴故選:C.【點(diǎn)睛】本題考查分式的性質(zhì)及化簡求值,根據(jù)題意,正確計(jì)算是解題關(guān)鍵.4、C【分析】根據(jù)有理數(shù)的定義可找出,0,π,,6這5個數(shù)中0,6為有理數(shù),再根據(jù)概率公式即可求出抽到有理數(shù)的概率.【詳解】解:在,0,π,,6這5個數(shù)中0,6為有理數(shù),抽到有理數(shù)的概率是.故選C.【點(diǎn)睛】本題考查了概率公式以及有理數(shù),根據(jù)有理數(shù)的定義找出五個數(shù)中有理數(shù)的個數(shù)是解題的關(guān)鍵.5、A【解析】試題分析:判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.解:A.符合最簡二次根式的兩個條件,故本選項(xiàng)正確;B.被開方數(shù)含分母,不是最簡二次根式,故本選項(xiàng)錯誤;C.被開方數(shù)含能開得盡方的因數(shù),不是最簡二次根式,故本選項(xiàng)錯誤;D.被開方數(shù)含能開得盡方的因數(shù),不是最簡二次根式,故本選項(xiàng)錯誤.故選A.6、D【分析】增長率問題,一般為:增長后的量=增長前的量×(1+增長率),本題可先用x表示出二月份的產(chǎn)值,再根據(jù)題意表示出三月份的產(chǎn)值,然后將三個月的產(chǎn)值相加,即可列出方程.【詳解】解:二月份的產(chǎn)值為:50(1+x),三月份的產(chǎn)值為:50(1+x)(1+x)=50(1+x)2,故根據(jù)題意可列方程為:50+50(1+x)+50(1+x)2=1.故選D.【點(diǎn)睛】本題考查的是一元二次方程的運(yùn)用,解此類題目時(shí)常常要按順序列出接下來幾年的產(chǎn)值,再根據(jù)題意列出方程即可.7、A【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六邊形和等邊三角形的性質(zhì)求出GH=PG+PQ+QH=9cm,由等邊三角形的面積公式即可得出答案.【詳解】如圖所示:作AP⊥GH于P,BQ⊥GH于Q,如圖所示:

∵△GHM是等邊三角形,

∴∠MGH=∠GHM=60°,

∵六邊形ABCDEF是正六邊形,

∴∠BAF=∠ABC=120°,正六邊形ABCDEF是軸對稱圖形,

∵G、H、M分別為AF、BC、DE的中點(diǎn),△GHM是等邊三角形,

∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,

∴∠BAF+∠AGH=180°,

∴AB∥GH,

∵作AP⊥GH于P,BQ⊥GH于Q,

∴PQ=AB=6cm,∠PAG=90°-60°=30°,

∴PG=AG=cm,

同理:QH=cm,

∴GH=PG+PQ+QH=9cm,

∴△GHM的面積=GH2=cm2;

故選:A.【點(diǎn)睛】此題主要考查了正六邊形的性質(zhì)、等邊三角形的性質(zhì)及三角形的面積公式等知識;熟練掌握正六邊形和等邊三角形的性質(zhì)是解題的關(guān)鍵.8、D【分析】根據(jù)相似三角形的面積比等于相似比的平方即可解決問題.【詳解】解:∵,∴,∵,∴,故選:D.【點(diǎn)睛】此題考查相似三角形的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì)解決問題,記住相似三角形的面積比等于相似比的平方.9、D【解析】試題解析:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10對故選D.10、B【分析】根據(jù)垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧求解.【詳解】解:∵直徑AB⊥弦CD∴CE=DE故選B.【點(diǎn)睛】本題考查垂徑定理,本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握垂徑定理,即可完成.二、填空題(每小題3分,共24分)11、【解析】根據(jù)弧長公式可得:=,故答案為.12、4.2【解析】設(shè)菱形ABCD的邊長為x,則AB=BC=x,又EC=2,所以BE=x-2,因?yàn)锳E⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=于是=,解得x=1,即AB=1.所以易求BE=2,AE=6,當(dāng)EP⊥AB時(shí),PE取得最小值.故由三角形面積公式有:AB?PE=BE?AE,求得PE的最小值為4.2.點(diǎn)睛:本題考查了余弦函數(shù)在直角三角形中的運(yùn)用、三角形面積的計(jì)算和最小值的求值問題,求PE的值是解題的關(guān)鍵13、.【分析】用列表法或畫樹狀圖法分析所有等可能的結(jié)果,然后根據(jù)概率公式求出該事件的概率.【詳解】解:畫樹狀圖如下:

∵一共有6種情況,兩個球都是白球有2種,

∴P(兩個球都是白球),

故答案為:.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.14、【解析】EC=2BE,得,由于AD//BC,得15、0.4m【分析】先證明△OAB∽△OCD,再根據(jù)相似三角形的對應(yīng)邊成比例列方程求解即可.【詳解】∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO.∵∠AOB=∠COD,∴△OAB∽△OCD,∴AO:CO=AB:CD,∴4:1=1.6:CD,∴CD=0.4.故答案為0.4.【點(diǎn)睛】本題主要考查了相似三角形的應(yīng)用,正確地把實(shí)際問題轉(zhuǎn)化為相似三角形問題,利用相似三角形的判定與性質(zhì)解決是解題的關(guān)鍵.16、【解析】根據(jù)眾數(shù)的概念求解可得.【詳解】∵數(shù)據(jù)4,3,x,1,1的眾數(shù)是1,∴x=1,故答案為1.【點(diǎn)睛】本題主要考查眾數(shù),求一組數(shù)據(jù)的眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個數(shù)據(jù).17、【分析】根據(jù)題意首先求出,再將所求式子因式分解,最后代入求值即可.【詳解】把代入一元二次方程得,

所以.

故答案為:1.

【點(diǎn)睛】本題考查了一元二次方程的解及因式分解求代數(shù)式的值,明確方程的解的意義即熟練因式分解是解決問題的關(guān)鍵.18、確定【分析】根據(jù)“確定定義”或“隨機(jī)定義”即可解答.【詳解】“蜀南竹海是國家AAAA級旅游勝地,位于宜賓市境內(nèi)”,所以是確定事件.故答案為:確定.【點(diǎn)睛】本題考查必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,確定事件包括必然事件、不可能事件;不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,.三、解答題(共66分)19、【分析】利用因式分解法求解即可.【詳解】因式分解,得于是得或故原方程的解為:.【點(diǎn)睛】本題考查了一元二次方程的解法,其主要解法包括:直接開方法、配方法、公式法、因式分解法(十字相乘法)等,熟記各解法是解題關(guān)鍵.20、(1)①105°,②見解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解決問題,②連接A′F,設(shè)EF交CA′于點(diǎn)O,在EF時(shí)截取EM=EC,連接CM.首先證明△CFA′是等邊三角形,再證明△FCM≌△A′CE(SAS),即可解決問題.(2)如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.證明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F(xiàn)關(guān)于A′E對稱,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解決問題.【詳解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋轉(zhuǎn)角α為105°.②證明:連接A′F,設(shè)EF交CA′于點(diǎn)O.在EF時(shí)截取EM=EC,連接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等邊三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等邊三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F(xiàn)關(guān)于A′E對稱,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值為.【點(diǎn)睛】本題屬于四邊形綜合題,考查旋轉(zhuǎn)變換相關(guān),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)以及三角形的三邊關(guān)系等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題,難度較大.21、(1)該廣場綠化區(qū)域的面積為144平方米;(2)廣場中間小路的寬為1米.【分析】(1)根據(jù)該廣場綠化區(qū)域的面積=廣場的長×廣場的寬×80%,即可求出結(jié)論;(2)設(shè)廣場中間小路的寬為x米,根據(jù)矩形的面積公式(將綠化區(qū)域合成矩形),即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】解:(1)18×10×80%=144(平方米).答:該廣場綠化區(qū)域的面積為144平方米.(2)設(shè)廣場中間小路的寬為x米,依題意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合題意,舍去).答:廣場中間小路的寬為1米.【點(diǎn)睛】本題考查的知識點(diǎn)是一元二次方程的應(yīng)用,找準(zhǔn)題目中的等量關(guān)系式是解此題的關(guān)鍵.22、(1)見解析;(2)33;(3)不會隨著α【解析】(1)先判斷出△BCD是等邊三角形,進(jìn)而求出∠ADP=∠ACD,即可得出結(jié)論;

(2)求出PH,最后用三角形的面積公式即可得出結(jié)論;

(3)只要證明△DPM和△DCN相似,再根據(jù)相似三角形對應(yīng)邊成比例即可證明.【詳解】(1)證明:∵△ABC是直角三角形,點(diǎn)D是AB的中點(diǎn),∴AD=BD=CD,∵在△BCD中,BC=BD且∠B=60°,∴△BCD是等邊三角形,∴∠BCD=∠BDC=60°,∴∠ACD=90°-∠BCD=30°,∠ADE=180°-∠BDC-∠EDF=30°,在△ADC與△APD中,∠A=∠A,∠ACD=∠ADP,∴△ADC∽△APD.(2)由(1)已得△BCD是等邊三角形,∴BD=BC=AD=2,過點(diǎn)P作PH⊥AD于點(diǎn)H,∵∠ADP=30°=90°-∠B=∠A,∴AH=DH=1,tanA=PHAH∴PH=33∴△APD的面積=12AD·PH=(3)PMCN的值不會隨著α的變化而變化∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,在△MPD與△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,∴△MPD∽△NCD,∴PMCN由(1)知AD=CD,∴PMCN由(2)可知PD=2AH,∴PD=23∴PMCN∴PMCN的值不會隨著α的變化而變化【點(diǎn)睛】屬于相似三角形的綜合題,考查相似三角形的判定與性質(zhì),銳角三角函數(shù),三角形的面積等,綜合性比較強(qiáng),對學(xué)生綜合能力要求較高.23、(2)拋物線的解析式為y=﹣x2+2x+2.(2)證明見解析;(2)點(diǎn)P坐標(biāo)為(,)或(2,2).【解析】試題分析:(2)將A(﹣2,0)、C(0,2),代入二次函數(shù)y=ax2+bx﹣2a,求得a、b的值即可確定二次函數(shù)的解析式;(2)分別求得線段BC、CD、BD的長,利用勾股定理的逆定理進(jìn)行判定即可;(2)分以CD為底和以CD為腰兩種情況討論.運(yùn)用兩點(diǎn)間距離公式建立起P點(diǎn)橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再結(jié)合拋物線解析式即可求解.試題解析:(2)∵二次函數(shù)y=ax2+bx﹣2a經(jīng)過點(diǎn)A(﹣2,0)、C(0,2),∴將A(﹣2,0)、C(0,2),代入,得,解得,∴拋物線的解析式為y=﹣x2+2x+2;(2)如圖,連接DC、BC、DB,由y=﹣x2+2x+2=﹣(x﹣2)2+4得,D點(diǎn)坐標(biāo)為(2,4),∴CD==,BC==2,BD==2,∵CD2+BC2=()2+(2)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(2)y=﹣x2+2x+2對稱軸為直線x=2.假設(shè)存在這樣的點(diǎn)P,①以CD為底邊,則P2D=P2C,設(shè)P2點(diǎn)坐標(biāo)為(x,y),根據(jù)勾股定理可得P2C2=x2+(2﹣y)2,P2D2=(x﹣2)2+(4﹣y)2,因此x2+(2﹣y)2=(x﹣2)2+(4﹣y)2,即y=4﹣x.又P2點(diǎn)(x,y)在拋物線上,∴4﹣x=﹣x2+2x+2,即x2﹣2x+2=0,解得x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論