




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FieldandWaveElectromagnetics電磁場(chǎng)與電磁波2012.3.201Maintopic4.SolutionofElectrostaticProblems3.MethodofImages1.Poisson’sandLaplace’sEquations2.UniquenessofElectrostaticSolutions4.Boundary-ValueProblemsinCartesianCoordinates2
The
relationship
betweentheelectricpotentialVandtheelectricfieldintensity
E
is
Takingthedivergenceoperationforbothsidesoftheaboveequationgives
Ina
linear,andisotropic
medium,thedivergenceoftheelectricfieldintensity
E
is1.Poisson’sandLaplace’sEquations3Thedifferentialequationforthe
electricpotential
iswhichiscalled
Poisson’sequation.
Ina
nofreecharge(source-free)
region,andtheaboveequationbecomeswhichiscalled
Laplace’s
equation.
4
Poisson’sequation
statesthattheLaplacian(thedivergenceofthegradient)ofVequals–/forasimplemedium,where
isthepermittivityofthemedium(whichisaconstant)and
isthevolumechargedensityoffreecharges.Operator,
2,theLaplacianoperator,whichstandsfor“thedivergenceofthegradientof,”or“”.Sincebothdivergenceandgradientoperationsinvolve
first-orderspatialderivatives.
Poisson’sequation
isa
second-orderpartialdifferentialequation
thatholdsateverypointinspacewherethesecond-order
derivatives
exist.
Remarks5InCartesiancoordinates:Insphericalcoordinates:Incylindricalcoordinates:6邊值問題研究方法計(jì)算法解析法積分變換法分離變量法鏡像法(電軸法)微分方程法保角變換法實(shí)驗(yàn)法作圖法實(shí)測(cè)法模擬法定性定量數(shù)學(xué)模擬法物理模擬法數(shù)值法有限差分法有限元法邊界元法矩量法半解析法/半數(shù)值法格林函數(shù)法7Example1.一維泊松方程的解ThetwometalplateshavinganareaA
andaseparationdformaparallel-platecapacitor.TheupperplateisheldatpotentialofV0
,andthelowerplateisgrounded.Determine(a)thepotentialdistribution(b)theelectricfieldintensity(c)thechargedistributiononeachplate(d)thecapacitanceoftheparallel-platecapacitor8Solution:Choose
anappropriate
coordinatesystem
forthegivengeometry2.Governingequation
forproblemsand
boundarycondition.勻強(qiáng)電場(chǎng),電位V只是隨高度z的變化而變化94.特解(帶入邊界條件求解未知系數(shù))3.方程的通解1011Example2.
The
inner
conductorofradius
a
ofa
coaxialcable
isheldatapotentialof
V0
whiletheouterconductorofradius
b
is
groundedDetermine(a)the
potentialdistributionbetweentheconductors
(b)the
electricfieldintensity(c)the
chargedensity
ontheinnerconductor
(d)the
capacitanceofthe
perunitlength12Choose
anappropriate
coordinatesystem
forthegivengeometry2.Governingequation
forproblemsand
boundarycondition.Solution:134.特解(帶入邊界條件求解未知系數(shù))
3.方程的通解141516Example3
Theupperandlowerconductingplatesofalargeparallel-platecapacitorareseparatedbyadistance
d
andmaintainedatpotentials
V0
and
0respectively.
Adielectricslabofdielectricrconstantanduniformthickness0.8d
isplacedoverthelowerplate.EandD
?yxD2D1E2E117(1)
求解區(qū)域:平行板電容器之間的區(qū)域(2)
分區(qū):由于填充兩種介質(zhì),因此場(chǎng)量在分界面上會(huì)發(fā)生突變,因此,分成兩個(gè)子區(qū)域(3)
建立坐標(biāo)系:豎直向上為y軸方向,建立坐標(biāo)系(4)場(chǎng)分布分析:在兩種介質(zhì)中都是勻強(qiáng)電場(chǎng),電位V只是隨高度y的變化而變化V(y),而與x,z無關(guān),(5)
寫出場(chǎng)方程與邊界條件:待求量是兩個(gè)區(qū)域的電位V1、V2,場(chǎng)方程:泊松方程(有源)or拉普拉斯方程(無源)yxD2D1E2E118區(qū)域1:區(qū)域2:yxD2D1E2E119
寫出通解:一維邊值問題BVP電位的邊界條件,兩個(gè)介質(zhì)的銜接條件:2021yxD2D1E2E122uniquenesstheorem:meansthatasolutionofPoisson’sequation(ofwhichLaplace’sequationisaspecialcase)thatsatisfiesthegivenboundaryconditionsisauniquesolution.
Itdoesnotmeanthatonlyonemethodcanbeusedtoobtainthesolutionoftheelectrostaticproblem.Theimplicationoftheuniquenesstheoremisthatasolutionofanelectrostaticproblemwithitsboundaryconditionsistheonlypossiblesolution
irrespectiveofthemethodbywhichthesolutionisobtained.Asolutionobtainedevenbyintelligentguessingistheonlycorrectsolution2.UniquenessofElectrostaticSolutions23點(diǎn)電荷和帶電的球殼、球體在R>a的區(qū)域中產(chǎn)生的場(chǎng)是是相等的,稱為這三種源是相互等效的.注:在R<a的區(qū)域是不等效的,所以等效只是對(duì)某一區(qū)域等效,對(duì)另一區(qū)域是不等效的xyzxyzaxyza3.MethodofImages24yQdHalf-spaceproblemExample.
Considerthecaseofa
positivepointcharge
Q,locatedatadistancedabovealarge
grounded(zero-potential)conductingplane.
Theproblemistofindthepotentialateverypointabovetheconductingplane(y>0).(1)chap2:感應(yīng)電荷很難求(2)直接解方程:25yQdHalf-spaceproblem點(diǎn)電荷&感應(yīng)電荷產(chǎn)生的場(chǎng),靜態(tài)平衡后,導(dǎo)體表面是等勢(shì)面,電力線與其正交。而這種電力線的分布與以xoz平面為對(duì)稱面,在(0,d,0)處點(diǎn)電荷Q,(0,-d,0)處有-Q的一對(duì)點(diǎn)電荷在x>0空間的電力線分布相似。(3)另辟蹊徑:(等效原理)感應(yīng)(極化)電荷產(chǎn)生的場(chǎng),由假想的簡(jiǎn)單電荷(像點(diǎn)電荷線電荷等)分布產(chǎn)生的場(chǎng)來等效(4)問題:引入像電荷后求得的場(chǎng),是不是原問題的場(chǎng)?判斷的依據(jù)
(uniqueness
theorem)是不是滿足原問題的場(chǎng)方程&邊界條件?26ImageChargeImagemethod
V(x,0,z)=0yQ–Q根據(jù)場(chǎng)疊加原理,寫出點(diǎn)電荷和像電荷在上半空間任意一點(diǎn)P處產(chǎn)生的場(chǎng)的表達(dá)式BVPB-C(判斷的條件)等效問題的場(chǎng)就是原問題的場(chǎng)27MethodofImage
Essence:
Theeffectoftheboundary
isreplacedbyoneorseveral
equivalentcharges,andtheoriginalinhomogeneousregionwithaboundarybecomes
aninfinitehomogeneous
space.
Basis:Theprincipleofuniqueness.Therefore,thesechargesshouldnotchangetheoriginalboundaryconditions.Theseequivalentchargesareattheimagepositionsoftheoriginalcharges,andarecalled
imagecharges,andthismethodiscalledthemethodofimages.
Key:Todetermine
thevalues
and
thepositions
oftheimagecharges.
Restriction:Theseimagechargesmaybedeterminedonlyforsome
specialboundaries
(infiniteplane,infinitelylongwedge,infinitelylongcylindrical,andsphericalboundaries)andchargeswith
certaindistributions.28q
Forthesemi-infinite
wedge
conductingboundary,themethodofimagesisalsoapplicable.However,theimagescanbefoundonlyforconductingwedgeswithanglegivenbywhere
n
isaninteger.Inordertokeepthewedgeboundaryatzero-potential,
several
imagechargesarerequired./3
Whenan
infiniteline
chargeisnearbyaninfiniteconductingplane,themethodofimagescanbeappliedaswell,basedonthe
principleof
superposition./3q29In
rectangularcoordinatesystem,Laplace’sEquationforelectricpotentialisLet
Substitutingitintotheaboveequation,anddividingbothsidesby
X(x)Y(y)Z(z),wehave
Whereeachterminvolves
onlyonevariable.Theonlywaytheequationcanbesatisfiedistohave
eachterm
equalto
aconstant.Lettheseconstantsbe,andwehave4.Boundary-ValueProblemsinCartesianCoordinates30
Thethreeseparationconstantsarenotindependentofeachother,andtheysatisfythefollowingequation
Thethree-dimensional
partial
differentialequationisseparatedtothree
ordinary
differentialequations,andthesolutionsoftheordinarydifferentialequationsareeasiertoobtain.
orwhereA,B,C,D
aretheconstantstobedetermined.where
kx
,ky
,kz
arecalledtheseparationconstants,andtheycouldbe
real
or
imaginary
numbers.
Ifkxis
anrealnumber,
Thesolutionoftheequationforthevariable
x
canbewrittenas31or
Thesolutionsoftheequationsforthevariables
y
and
z
havethe
sameforms.Theproductofthesesolutionsgivesthesolutionoftheoriginalpartialdifferentialequation.
Theseparationconstantscouldbeimaginarynumbers.Ifis
animaginarynumber,writtenas,thentheequationbecomes
Theconstantsinthesolutionsare
also
relatedtotheboundaryconditions.
Itisveryimportanttoselect
theforms
ofthesolutions,whichdependonthegiven
boundaryconditions.32Example.
Twosemi-infinite,groundedconductingplanesareparalleltoeachotherwithaseparationof
d.Thefiniteendisclosedbyaconductingplaneheldatelectricpotential
V0
,andisisolatedfromthesemi-infinitegroundedconductingplanewithasmallgap.Findthe
electricpotential
intheslot
constructedbythethreeconductingplanes.Solution:
Select
rectangular
coordinatesystem.Sincetheconductingplaneisinfinite
inthe
z-direction,thepotentialintheslotmustbe
independent
of
z,andthisisa
two-dimensional
problem.TheLaplace’sEquationfortheelectricpotentialbecomesdxyV=0V=0V=V0O33Usingthemethodof
separationofvariables,andlet
Theboundaryconditionsfortheelectricpotential
intheslot
canbeexpressedas
Inordertosatisfytheboundaryconditionsand,thesolutionof
Y(y)
shouldbeselectedas
Fromtheboundarycondition,wehave
V=0
aty=0,andtheconstant
B=0.Inordertosatisfy,theconstant
ky
shouldbe34WefindSince,weobtainTheconstant
kx
isanimaginarynumber,andthesolutionof
X(x)
shouldbeSince
V
=
0
at
x,theconstant
C=0,andThenWheretheconstant
C=AD
.35Since
V=V0
at
x=0
,andwehave
Therightsideoftheaboveequationisvariable,since
C
and
n
arenotfixed.Tosatisfytherequirementat
x=0,oneneedstotakethe
linearcombination
oftheequationasthesolution,leadingto
I
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中小學(xué)生校外培訓(xùn)服務(wù)合同
- 項(xiàng)目管理效率提升的實(shí)施方案
- 建筑工程投資合作協(xié)議合同
- 本小區(qū)物業(yè)管理合同書
- 酒店合作協(xié)議書范本旅游
- 智能交通大數(shù)據(jù)分析平臺(tái)服務(wù)協(xié)議
- 債權(quán)代償及擔(dān)保協(xié)議
- 智能穿戴設(shè)備研發(fā)及生產(chǎn)銷售合同
- 醫(yī)療器械研發(fā)及生產(chǎn)合作協(xié)議
- 船舶維修服務(wù)采購(gòu)合同
- DeepSeek1天開發(fā)快速入門
- 2025書記員招聘考試題庫(kù)及參考答案
- 2024-2025年第二學(xué)期數(shù)學(xué)教研組工作計(jì)劃
- 2025輔警招聘公安基礎(chǔ)知識(shí)題庫(kù)附含參考答案
- 2025年菏澤醫(yī)學(xué)??茖W(xué)校高職單招職業(yè)技能測(cè)試近5年常考版參考題庫(kù)含答案解析
- 成都四川成都簡(jiǎn)陽(yáng)市簡(jiǎn)城街道便民服務(wù)和智慧蓉城運(yùn)行中心招聘綜治巡防隊(duì)員10人筆試歷年參考題庫(kù)附帶答案詳解
- 2025-2030全球廢棄食用油 (UCO) 轉(zhuǎn)化為可持續(xù)航空燃料 (SAF) 的催化劑行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 山東省臨沂市蘭山區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期末考試生物試卷(含答案)
- 2025年環(huán)衛(wèi)工作計(jì)劃
- 湖北省武漢市2024-2025學(xué)年度高三元月調(diào)考英語(yǔ)試題(含答案無聽力音頻有聽力原文)
- 品質(zhì)巡檢培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論