版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
課題:5.2.2同角三角函數(shù)的基本關(guān)系教學(xué)設(shè)計(jì)(第3課時(shí))(一)教學(xué)內(nèi)容《普通高中數(shù)學(xué)必修第一冊(cè)》人教A版(2019)第五章《三角函數(shù)》的第二節(jié)《三角函數(shù)的概念》(二)教學(xué)目標(biāo)1.能根據(jù)三角函數(shù)的定義推導(dǎo)同角三角函數(shù)的基本關(guān)系式,培養(yǎng)數(shù)學(xué)抽象的核心素養(yǎng) 2.掌握同角三角函數(shù)的基本關(guān)系式,并能根據(jù)一個(gè)角的三角函數(shù)值,求其它三角函數(shù)值,提升數(shù)學(xué)運(yùn)算的核心素養(yǎng);3.會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明,提升數(shù)學(xué)運(yùn)算的核心素養(yǎng)。(三)教學(xué)重點(diǎn)及難點(diǎn)重點(diǎn):理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用;難點(diǎn):會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明.(四)教學(xué)過(guò)程設(shè)計(jì)(主體內(nèi)容)用問(wèn)題分解教學(xué)目標(biāo)1.課題導(dǎo)入1.創(chuàng)設(shè)情境,生成問(wèn)題氣象學(xué)家洛倫茲1963年提出一種觀點(diǎn):南美洲亞馬遜河流域熱帶雨林中的一只蝴蝶,偶爾扇動(dòng)幾下翅膀,可能在兩周后引起美國(guó)德克薩斯的一場(chǎng)龍卷風(fēng).這就是理論界聞名的“蝴蝶效應(yīng)”,此效應(yīng)本意是說(shuō)事物初始條件的微弱變化可能會(huì)引起結(jié)果的巨大變化.蝴蝶扇翅膀成為龍卷風(fēng)的導(dǎo)火索.從中我們還可以看出,南美洲亞馬遜河流域熱帶雨林中的一只蝴蝶與北美德克薩斯的龍卷風(fēng)看來(lái)是毫不相干的兩種事物,卻會(huì)有這樣的聯(lián)系,這也正驗(yàn)證了哲學(xué)理論中事物是普遍聯(lián)系的觀點(diǎn).想一想:既然感覺(jué)毫不相干的事物之間都是相互聯(lián)系的,那么“同一個(gè)角”的三角函數(shù)之間有沒(méi)有關(guān)系呢?提示:有.2.探究教學(xué)設(shè)角α的終邊與單位圓交于點(diǎn)P(x,y),根據(jù)三角函數(shù)的定義知y=sinα,x=cosα,yx=tanα【探究1】能否根據(jù)x,y的關(guān)系得到sinα,cosα,tanα的關(guān)系?【提示】sin2α+cos2α=1,eq\f(sinα,cosα)=tan_α.【探究2】公式sin2α+cos2α=1與eq\f(sinα,cosα)=tan_α對(duì)任意角都成立嗎?【提示】sin2α+cos2α=1對(duì)任意角α均成立,當(dāng)α≠kπ+,k∈Z時(shí),eq\f(sinα,cosα)=tan_α成立.【設(shè)計(jì)意圖】通過(guò)復(fù)習(xí)三角函數(shù)的定義,用聯(lián)系的觀點(diǎn)引入本節(jié)新課,建立知識(shí)間的聯(lián)系,提高學(xué)生概括推理的能力。(二)同角三角函數(shù)的基本關(guān)系同角三角函數(shù)的基本關(guān)系(1)平方關(guān)系:sin2α+cos2α=1;(2)商數(shù)關(guān)系:eq\f(sinα,cosα)=tan_α(α≠eq\f(π,2)+kπ,k∈Z).(3)文字?jǐn)⑹觯和粋€(gè)角α的正弦、余弦的平方和等于1,商等于角α的正切.【思考】“同角”一詞的含義是什么?【提示】一是“角相同”,如sin2α+cos2β=1就不一定成立.二是對(duì)任意一個(gè)角(在使得函數(shù)有意義的前提下),關(guān)系式都成立,即與角的表達(dá)式形式無(wú)關(guān),如sin215°+cos215°=1,sin2eq\f(π,19)+cos2eq\f(π,19)=1等.【做一做1】已知α是第四象限角,cosα=eq\f(12,13),則sinα=.【答案】-eq\f(5,13)【做一做2】sin2eq\f(θ,2)+cos2eq\f(θ,2)=.【答案】1【做一做3】已知3sinα+cosα=0,則tanα=.【答案】-eq\f(1,3)拓展:基本關(guān)系式的變形公式sin2α+cos2α=1?eq\b\lc\{\rc\(\a\vs4\al\co1(sin2α=1-cos2α,,cos2α=1-sin2α,,sinα=±\r(1-cos2α),,cosα=±\r(1-sin2α),,sinα±cosα2=1±2sinαcosα.))tanα=eq\f(sinα,cosα)?eq\b\lc\{\rc\(\a\vs4\al\co1(sinα=tanαcosα,,cosα=\f(sinα,tanα).))【設(shè)計(jì)意圖】通過(guò)探究讓學(xué)生理解探究三角函數(shù)的基本關(guān)系,提高學(xué)生分析問(wèn)題的能力。(三)典型例題1.已知一個(gè)三角函數(shù)值求另兩個(gè)三角函數(shù)值例1.已知cosα=-eq\f(8,17),角α在第二象限,求sinα,tanα的值.【解析】α是第二象限角時(shí),sinα>0,tanα<0,∴sinα=eq\r(1-cos2α)=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(8,17)))2)=eq\f(15,17),tanα=eq\f(sinα,cosα)=eq\f(\f(15,17),-\f(8,17))=-eq\f(15,8).【變式探究1】將本例條件“角α在第二象限”去掉,求sinα,tanα的值.[解析]∵cosα=-eq\f(8,17)<0,∴α是第二或第三象限角.當(dāng)α是第二象限角時(shí),sinα>0,tanα<0,∴sinα=eq\r(1-cos2α)=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(8,17)))2)=eq\f(15,17),tanα=eq\f(sinα,cosα)=eq\f(\f(15,17),-\f(8,17))=-eq\f(15,8).當(dāng)α是第三象限角時(shí),sinα<0,tanα>0,∴sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(8,17)))2)=-eq\f(15,17),tanα=eq\f(sinα,cosα)=eq\f(15,8).【變式探究2】已知tanα=-2,求sinα,cosα的值.[解析]法一:∵tanα=-2<0,∴α為第二或第四象限角,且sinα=-2cosα,①又sin2α+cos2α=1,②由①②消去sinα,得(-2cosα)2+cos2α=1,即cos2α=eq\f(1,5);當(dāng)α為第二象限角時(shí),cosα=-eq\f(\r(5),5),代入①得sinα=eq\f(2\r(5),5);當(dāng)α為第四象限角時(shí),cosα=eq\f(\r(5),5),代入①得sinα=-eq\f(2\r(5),5).法二:∵tanα=-2<0,∴α為第二或第四象限角.由tanα=eq\f(sinα,cosα),兩邊分別平方,得tan2α=eq\f(sin2α,cos2α),又sin2α+cos2α=1,∴tan2α+1=eq\f(sin2α,cos2α)+1=eq\f(sin2α+cos2α,cos2α)=eq\f(1,cos2α),即cos2α=eq\f(1,1+tan2α).當(dāng)α為第二象限角時(shí),cosα<0,∴cosα=-eq\r(\f(1,1+tan2α))=-eq\r(\f(1,1+-22))=-eq\f(\r(5),5),∴sinα=tanα·cosα=(-2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(5),5)))=eq\f(2\r(5),5).當(dāng)α為第四象限角時(shí),cosα>0,∴cosα=eq\r(\f(1,1+tan2α))=eq\r(\f(1,1+-22))=eq\f(\r(5),5),∴sinα=tanα·cosα=(-2)×eq\f(\r(5),5)=-eq\f(2\r(5),5).【類題通法】由某角的一個(gè)三角函數(shù)值求它的其余各三角函數(shù)值的依據(jù)及種類(1)依據(jù):cosα=±eq\r(1-sin2α)或sinα=±eq\r(1-cos2α),要根據(jù)角α所在的象限,一般是先選用平方關(guān)系,再用商數(shù)關(guān)系,恰當(dāng)選定根號(hào)前面的正負(fù)號(hào),而在使用tanα=eq\f(sinα,cosα)時(shí),不存在符號(hào)的選取問(wèn)題.(2)分類:①如果已知三角函數(shù)的值,且角的象限已被指定時(shí),則只有一組解;②如果已知三角函數(shù)的值,但沒(méi)有指定角在哪個(gè)象限,那么由已知三角函數(shù)值確定角可能在的象限,然后再求解,這種情況一般有兩組解;【鞏固練習(xí)1】已知sinφ=-eq\f(3,5),且|φ|<eq\f(π,2),則tanφ=()A.-eq\f(4,3) B.eq\f(4,3)C.-eq\f(3,4) D.eq\f(3,4)解析:選C∵sinφ=-eq\f(3,5),∴cos2φ=1-sin2φ=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,5)))2=eq\f(16,25),又|φ|<eq\f(π,2),即-eq\f(π,2)<φ<eq\f(π,2),∴cosφ=eq\f(4,5),從而tanφ=eq\f(sinφ,cosφ)=eq\f(-\f(3,5),\f(4,5))=-eq\f(3,4).2.齊次式求值例2.已知tanα=3,求:①eq\f(2sinα-3cosα,4sinα-9cosα);②sin2α-3sinαcosα+1.[解析]①原式=eq\f(2tanα-3,4tanα-9)=eq\f(2×3-3,4×3-9)=1.②原式=eq\f(sin2α-3sinαcosα,sin2α+cos2α)+1=eq\f(tan2α-3tanα,1+tan2α)+1=eq\f(32-3×3,1+32)+1=0+1=1.【類題通法】關(guān)于sinα,cosα的齊次式的求值方法(1)關(guān)于sinα,cosα的齊次式,可以通過(guò)分子、分母同除以cosα或cos2α轉(zhuǎn)化為關(guān)于tanα的式子后再求值.(2)假如代數(shù)式中不含分母,可以視分母為1,靈活地進(jìn)行“1”的代換,由1=sin2α+cos2α代換后,再同除以cos2α,構(gòu)造出關(guān)于tanα的代數(shù)式.【鞏固練習(xí)2】已知eq\f(sinα-2cosα,3sinα+5cosα)=-5,那么tanα的值為()A.-2 B.2C.eq\f(23,16) D.-eq\f(23,16)解析:由eq\f(sinα-2cosα,3sinα+5cosα)=-5,分子分母同除以cosα得:eq\f(tanα-2,3tanα+5)=-5,解得tanα=-eq\f(23,16).答案:D3.關(guān)于sinθ±cos例3.已知sinθ+cosθ=eq\f(1,5),且0<θ<π,求sinθ-cosθ.[解析]∵sinθ+cosθ=eq\f(1,5),∴(sinθ+cosθ)2=eq\f(1,25),解得sinθcosθ=-eq\f(12,25).∴(sinθ-cosθ)2=1-2sinθcosθ=eq\f(49,25).∵0<θ<π,且sinθcosθ<0,∴sinθ>0,cosθ<0,∴sinθ-cosθ>0,∴sinθ-cosθ=eq\f(7,5).【類題通法】(1)sinθ+cosθ,sinθcosθ,sinθ-cosθ三個(gè)式子中,已知其中一個(gè),可以求其他兩個(gè),即“知一求二”.(2)求sinθ+cosθ或sinθ-cosθ的值,開方時(shí)要注意判斷它們的符號(hào).(3)sinθ±cosθ與sinθcosθ相互轉(zhuǎn)化方法:(sinθ±cosθ)2=1±2sinθcosθ.【鞏固練習(xí)3】若sinθ-cosθ=eq\r(2),則tanθ+eq\f(1,tanθ)=.解析由已知得(sinθ-cosθ)2=2,∴sinθcosθ=-eq\f(1,2).∴tanθ+eq\f(1,tanθ)=eq\f(sinθ,cosθ)+eq\f(cosθ,sinθ)=eq\f(1,sinθcosθ)=-2.答案-24.三角函數(shù)式的化簡(jiǎn)例4.化簡(jiǎn)下列各式.(1)tanαeq\r(\f(1,sin2α)-1),其中α是第二象限角;(2)eq\f(cos36°-\r(1-cos236°),\r(1-2sin36°cos36°))[解析](1)因?yàn)棣潦堑诙笙藿?,所以sinα>0,cosα<0.故tanαeq\r(\f(1,sin2α)-1)=tanαeq\r(\f(1-sin2α,sin2α))=tanαeq\r(\f(cos2α,sin2α))=eq\f(sinα,cosα)·eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(cosα,sinα)))=eq\f(sinα,cosα)·eq\f(-cosα,sinα)=-1.(2)原式=eq\f(cos36°-\r(sin236°),\r(sin236°+cos236°-2sin36°cos36°))=eq\f(cos36°-sin36°,\r(cos36°-sin36°2))=eq\f(cos36°-sin36°,|cos36°-sin36°|)=eq\f(cos36°-sin36°,cos36°-sin36°)=1.【類題通法】1.三角函數(shù)式化簡(jiǎn)的本質(zhì)及關(guān)注點(diǎn)(1)本質(zhì):三角函數(shù)式化簡(jiǎn)的本質(zhì)是一種不指定答案的恒等變換,體現(xiàn)了由繁到簡(jiǎn)的最基本的數(shù)學(xué)解題原則.(2)關(guān)注點(diǎn):不僅要熟悉和靈活運(yùn)用同角三角函數(shù)的基本關(guān)系式,還要熟悉并靈活應(yīng)用這些公式的等價(jià)變形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα·cosα,cosα=eq\f(sinα,tanα).2.對(duì)三角函數(shù)式化簡(jiǎn)的原則(1)使三角函數(shù)式的次數(shù)盡量低.(2)使式中的項(xiàng)數(shù)盡量少.(3)使三角函數(shù)的種類盡量少.(4)使式中的分母盡量不含有三角函數(shù).(5)使式中盡量不含有根號(hào)和絕對(duì)值符號(hào).(6)能求值的要求出具體的值,否則就用三角函數(shù)式來(lái)表示.【鞏固練習(xí)4】化簡(jiǎn)eq\f(cosθ,1+cosθ)-eq\f(cosθ,1-cosθ)得()A.-eq\f(2,tan2θ)B.eq\f(2,tan2θ)C.-eq\f(2,tanθ)D.eq\f(2,tanθ)解析eq\f(cosθ,1+cosθ)-eq\f(cosθ,1-cosθ)=eq\f(cosθ1-cosθ-cosθ1+cosθ,1-cos2θ)=eq\f(-2cos2θ,sin2θ)=-eq\f(2,tan2θ).答案A5.三角函數(shù)式的證明例5.求證:2(1-sinα)(1+cosα)=(1-sinα+cosα)2.[證明]左邊=2(1-sinα+cosα-sinαcosα)=1+(sin2α+cos2α)-2sinα+2cosα-2sinαcosα=(1-2sinα+sin2α)+2cosα(1-sinα)+cos2α=(1-sinα)2+2cosα(1-sinα)+cos2α=(1-sinα+cosα)2=右邊.∴原式成立.【類題通法】證明三角恒等式的常用方法證明恒等式的過(guò)程就是分析、轉(zhuǎn)化、消去等式兩邊差異來(lái)促成統(tǒng)一的過(guò)程,證明時(shí)常用的方法有:(1)從一邊開始,證明它等于另一邊,遵循由繁到簡(jiǎn)的原則.(2)證明左右兩邊等于同一個(gè)式子.(3)證明左邊減去右邊等于零或左、右兩邊之比等于1.(4)證明與原式等價(jià)的另一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省泰州市姜堰區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期中地理試題(含答案)
- 數(shù)據(jù)中心項(xiàng)目投資計(jì)劃書
- 贛南師范大學(xué)《審計(jì)學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年電動(dòng)開顱設(shè)備項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 阜陽(yáng)師范大學(xué)《幼兒歌曲彈唱》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)協(xié)和學(xué)院《跨國(guó)公司經(jīng)營(yíng)與管理》2021-2022學(xué)年第一學(xué)期期末試卷
- 《股權(quán)轉(zhuǎn)讓合同》-企業(yè)管理
- 福建師范大學(xué)《漆畫人物創(chuàng)作大創(chuàng)作》2023-2024學(xué)年第一學(xué)期期末試卷
- 醫(yī)美行業(yè)研究框架關(guān)注上游高景氣賽道
- 福建師范大學(xué)《廣告史》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024-2030年中國(guó)鉀長(zhǎng)石行業(yè)運(yùn)行動(dòng)態(tài)與產(chǎn)銷需求預(yù)測(cè)報(bào)告
- 第四章-護(hù)理人際關(guān)系倫理
- 針灸室暈針應(yīng)急預(yù)案演練方案
- 第2章 第5節(jié) 科學(xué)探究:電容器2023-2024學(xué)年新教材高二物理必修第三冊(cè)同步課堂高效講義配套教學(xué)設(shè)計(jì)(魯科版2019)
- 電動(dòng)汽車充電設(shè)施及場(chǎng)站測(cè)試評(píng)價(jià)規(guī)范第1部分:總則
- 二次系統(tǒng)安全防護(hù)事故應(yīng)急預(yù)案格式(標(biāo)準(zhǔn)版)
- 餐飲技能大賽(中式面點(diǎn)師賽項(xiàng))理論考試題及答案
- 部編版2023-2024學(xué)年度六年級(jí)上冊(cè)語(yǔ)文期中測(cè)試卷(附答案)
- 2023-2024學(xué)年北京西城區(qū)八中高三(上)期中數(shù)學(xué)試題及答案
- 村集體所有房屋買賣合同書(35篇)
- 江蘇省南京市2024-2025學(xué)年高三上學(xué)期第一次學(xué)情調(diào)研英語(yǔ)試題含答案
評(píng)論
0/150
提交評(píng)論