安徽省蚌埠市2023屆高考數學考前最后一卷預測卷含解析_第1頁
安徽省蚌埠市2023屆高考數學考前最后一卷預測卷含解析_第2頁
安徽省蚌埠市2023屆高考數學考前最后一卷預測卷含解析_第3頁
安徽省蚌埠市2023屆高考數學考前最后一卷預測卷含解析_第4頁
安徽省蚌埠市2023屆高考數學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在點處的切線方程為,則()A. B. C.4 D.82.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形3.若復數滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知,則的值構成的集合是()A. B. C. D.5.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.16.若實數滿足的約束條件,則的取值范圍是()A. B. C. D.7.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.8.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.9.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.10.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.11.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.12.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.對于任意的正數,不等式恒成立,則的最大值為_____.14.在的展開式中,常數項為________.(用數字作答)15.二項式的展開式中所有項的二項式系數之和是64,則展開式中的常數項為______.16.已知函數,若,則實數的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.18.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.19.(12分)已知等差數列的前n項和為,,公差,、、成等比數列,數列滿足.(1)求數列,的通項公式;(2)已知,求數列的前n項和.20.(12分)設函數.(1)若恒成立,求整數的最大值;(2)求證:.21.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優(yōu)干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.22.(10分)設函數.(1)若函數在是單調遞減的函數,求實數的取值范圍;(2)若,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.2、B【解析】

化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.3、D【解析】

利用復數模的計算、復數的除法化簡復數,再根據復數的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數模的計算、復數的除法、復數的幾何意義,考查運算求解能力,屬于基礎題.4、C【解析】

對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.5、B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數量積的計算,考查圓的方程,屬于基礎題.6、B【解析】

根據所給不等式組,畫出不等式表示的可行域,將目標函數化為直線方程,平移后即可確定取值范圍.【詳解】實數滿足的約束條件,畫出可行域如下圖所示:將線性目標函數化為,則將平移,平移后結合圖像可知,當經過原點時截距最小,;當經過時,截距最大值,,所以線性目標函數的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數取值范圍的求法,屬于基礎題.7、A【解析】

執(zhí)行程序框圖,逐次計算,根據判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環(huán)結構的程序框圖的結果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據判斷條件終止循環(huán)是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.8、B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.9、D【解析】

設,利用余弦定理,結合雙曲線的定義進行求解即可.【詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數學運算能力.10、C【解析】

將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.11、D【解析】

根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.12、D【解析】

利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據均為正數,等價于恒成立,令,轉化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數,不等式恒成立,等價于恒成立,令則,當且僅當即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數的取值范圍,關鍵在于合理進行等價變形,此題可以構造二次函數求解,也可利用基本不等式求解.14、【解析】

的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.15、【解析】

由二項式系數性質求出,由二項展開式通項公式得出常數項的項數,從而得常數項.【詳解】由題意,.展開式通項為,由得,∴常數項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數的性質,掌握二項展開式通項公式是解題關鍵.16、【解析】

畫圖分析可得函數是偶函數,且在上單調遞減,利用偶函數性質和單調性可解.【詳解】作出函數的圖如下所示,觀察可知,函數為偶函數,且在上單調遞增,在上單調遞減,故,故實數的取值范圍為.故答案為:【點睛】本題考查利用函數奇偶性及單調性解不等式.函數奇偶性的常用結論:(1)如果函數是偶函數,那么.(2)奇函數在兩個對稱的區(qū)間上具有相同的單調性;偶函數在兩個對稱的區(qū)間上具有相反的單調性.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】

(1)根據題意計算得到,,得到橢圓方程.(2)設,聯(lián)立方程得到,根據,計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據直線和橢圓的位置關系求直線,將題目轉化為是解題的關鍵.18、(1)證明見解析;(2).【解析】

(1)取中點,連接,,證明平面,由線面垂直的性質可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點D,連接,.因為,,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,,平面平面,平面,所以平面,又因為平面,所以,由于,所以所以,所以.【點睛】本題考查線面垂直,考查三棱錐體積的計算,解題的關鍵是掌握線面垂直的判定與性質,屬于中檔題.19、(1),();(2).【解析】

(1)根據是等差數列,,、、成等比數列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當時,.②當時,.【點睛】此題等差數列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉化思想,屬于一般性題目.20、(1)整數的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構造函數,利用導數研究函數的單調性并確定其最值,從而得到正整數的最大值;(2)根據(1)的結論得到,利用不等式的基本性質可證得結論.【詳解】(1)由得,令,,令,對恒成立,所以,函數在上單調遞增,,,,,故存在使得,即,從而當時,有,,所以,函數在上單調遞增;當時,有,,所以,函數在上單調遞減.所以,,,因此,整數的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點睛】本題考查導數在函數單調性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.21、(1)乙的技術更好,見解析(2)①,;②【解析】

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論