版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.2018的相反數(shù)是()A. B.2018 C.-2018 D.2.如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點.連結MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小3.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°4.如圖,將一張三角形紙片的一角折疊,使點落在處的處,折痕為.如果,,,那么下列式子中正確的是()A. B. C. D.5.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n6.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.7.當a>0時,下列關于冪的運算正確的是()A.a(chǎn)0=1 B.a(chǎn)﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a58.如圖,是反比例函數(shù)圖象,陰影部分表示它與橫縱坐標軸正半軸圍成的區(qū)域,在該區(qū)域內(nèi)不包括邊界的整數(shù)點個數(shù)是k,則拋物線向上平移k個單位后形成的圖象是A. B.C. D.9.義安區(qū)某中學九年級人數(shù)相等的甲、乙兩班學生參加同一次數(shù)學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定10.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°11.下列實數(shù)中,無理數(shù)是()A.3.14 B.1.01001 C. D.12.下列計算正確的是()A.(a)=a B.a(chǎn)+a=aC.(3a)?(2a)=6a D.3a﹣a=3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.-3的倒數(shù)是___________14.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.15.已知點(﹣1,m)、(2,n)在二次函數(shù)y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).16.已知:如圖,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.17.某小區(qū)購買了銀杏樹和玉蘭樹共150棵用來美化小區(qū)環(huán)境,購買銀杏樹用了12000元,購買玉蘭樹用了9000元.已知玉蘭樹的單價是銀杏樹單價的1.5倍,求銀杏樹和玉蘭樹的單價.設銀杏樹的單價為x元,可列方程為______.18.如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點O,則線段AO的最大值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.20.(6分)剪紙是中國傳統(tǒng)的民間藝術,它畫面精美,風格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)21.(6分)如圖,在?ABCD中,以點4為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于12(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大?。?2.(8分)如圖,在?ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.23.(8分)如圖,在平面直角坐標系xOy中,直線與函數(shù)的圖象的兩個交點分別為A(1,5),B.(1)求,的值;(2)過點P(n,0)作x軸的垂線,與直線和函數(shù)的圖象的交點分別為點M,N,當點M在點N下方時,寫出n的取值范圍.24.(10分)如圖,反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=2x的圖象相交于點A,其橫坐標為1.(1)求k的值;(1)點B為此反比例函數(shù)圖象上一點,其縱坐標為2.過點B作CB∥OA,交x軸于點C,求點C的坐標.25.(10分)如圖,為的直徑,,為上一點,過點作的弦,設.(1)若時,求、的度數(shù)各是多少?(2)當時,是否存在正實數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.26.(12分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.27.(12分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】【分析】根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可得.【詳解】2018與-2018只有符號不同,由相反數(shù)的定義可得2018的相反數(shù)是-2018,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關鍵.2、C【解析】如圖所示,連接CM,∵M是AB的中點,∴S△ACM=S△BCM=S△ABC,開始時,S△MPQ=S△ACM=S△ABC;由于P,Q兩點同時出發(fā),并同時到達終點,從而點P到達AC的中點時,點Q也到達BC的中點,此時,S△MPQ=S△ABC;結束時,S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.3、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關鍵點:理解相似多邊形性質(zhì).4、A【解析】
分析:根據(jù)三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得結論.詳解:由折疊得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故選A.點睛:本題考查了三角形外角的性質(zhì),熟練掌握三角形的外角等于與它不相鄰的兩個內(nèi)角的和是關鍵.5、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據(jù)拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數(shù)的值越大,根據(jù)判斷出它們與對稱軸之間的關系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當時,得∵∴∴故選C.點睛:考查二次函數(shù)的圖象以及性質(zhì),開口向上,距離對稱軸越遠的點,對應的函數(shù)值越大,6、D【解析】
根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關鍵.7、A【解析】
直接利用零指數(shù)冪的性質(zhì)以及負指數(shù)冪的性質(zhì)、冪的乘方運算法則分別化簡得出答案.【詳解】A選項:a0=1,正確;B選項:a﹣1=,故此選項錯誤;C選項:(﹣a)2=a2,故此選項錯誤;D選項:(a2)3=a6,故此選項錯誤;故選A.【點睛】考查了零指數(shù)冪的性質(zhì)以及負指數(shù)冪的性質(zhì)、冪的乘方運算,正確掌握相關運算法則是解題關鍵.8、A【解析】
依據(jù)反比例函數(shù)的圖象與性質(zhì),即可得到整數(shù)點個數(shù)是5個,進而得到拋物線向上平移5個單位后形成的圖象.【詳解】解:如圖,反比例函數(shù)圖象與坐標軸圍成的區(qū)域內(nèi)不包括邊界的整數(shù)點個數(shù)是5個,即,
拋物線向上平移5個單位后可得:,即,
形成的圖象是A選項.
故選A.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的圖象、二次函數(shù)的性質(zhì)與圖象,解答本題的關鍵是明確題意,求出相應的k的值,利用二次函數(shù)圖象的平移規(guī)律進行解答.9、B【解析】
根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點睛】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.10、B【解析】
先根據(jù)圖中是三個等邊三角形可知三角形各內(nèi)角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結論.【詳解】∵圖中是三個等邊三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故選B.【點睛】考查的是等邊三角形的性質(zhì),熟知等邊三角形各內(nèi)角均等于60°是解答此題的關鍵.11、C【解析】
先把能化簡的數(shù)化簡,然后根據(jù)無理數(shù)的定義逐一判斷即可得.【詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無理數(shù);D、是分數(shù),為有理數(shù);故選C.【點睛】本題主要考查無理數(shù)的定義,屬于簡單題.12、A【解析】
根據(jù)同底數(shù)冪的乘法的性質(zhì),冪的乘方的性質(zhì),積的乘方的性質(zhì),合并同類項的法則,對各選項分析判斷后利用排除法求解.【詳解】A.(a2)3=a2×3=a6,故本選項正確;B.a(chǎn)2+a2=2a2,故本選項錯誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項錯誤;D.3a﹣a=2a,故本選項錯誤.故選A.【點睛】本題考查了合并同類項,同底數(shù)冪的乘法,冪的乘方,積的乘方和單項式乘法,理清指數(shù)的變化是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
乘積為1的兩數(shù)互為相反數(shù),即a的倒數(shù)即為,符號一致【詳解】∵-3的倒數(shù)是∴答案是14、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.15、>;【解析】
∵=a(x-1)2-a-1,∴拋物線對稱軸為:x=1,由拋物線的對稱性,點(-1,m)、(2,n)在二次函數(shù)的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>16、2﹣π.【解析】試題分析:根據(jù)題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據(jù)∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.17、【解析】
根據(jù)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)“某小區(qū)購買了銀杏樹和玉蘭樹共1棵”列出方程即可.【詳解】設銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)題意,得:1.故答案為:1.【點睛】本題考查了由實際問題抽象出分式方程,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.18、【解析】
過O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進而可得AF=AO,根據(jù)正方形的性質(zhì)可得OB=OC,∠BOC=90°,由銳角互余的關系可得∠AOB=∠COF,進而可得△AOB≌△COF,即可證明AB=CF,當點A、C、F三點不共線時,根據(jù)三角形的三邊關系可得AC+CF>AF,當點A、C、F三點共線時可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【詳解】如圖,過O作OF⊥AO且使OF=AO,連接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AF=AO,∵四邊形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,當點A、C、F三點不共線時,AC+CF>AF,當點A、C、F三點共線時,AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AF=AO=7,∴AO=.故答案為【點睛】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握相關定理及性質(zhì)是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)結論:四邊形ACDF是矩形.理由見解析.【解析】
(1)只要證明AB=CD,AF=CD即可解決問題;(2)結論:四邊形ACDF是矩形.根據(jù)對角線相等的平行四邊形是矩形判斷即可;【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:結論:四邊形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四邊形ACDF是平行四邊形,∵四邊形ABCD是平行四邊形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等邊三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四邊形ACDF是矩形.【點睛】本題考查平行四邊形的判定和性質(zhì)、矩形的判定、全等三角形的判定和性質(zhì)等知識,解題的關鍵是正確尋找全等三角形解決問題.20、【解析】【分析】列表得出所有等可能結果,然后根據(jù)概率公式列式計算即可得解【詳解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9種等可能結果,其中抽出的兩張卡片上的圖案都是“金魚”的4種結果,所以抽出的兩張卡片上的圖案都是“金魚”的概率為.【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)見解析;(2)60°.【解析】
(1)先證明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可證明;(2)連結BF,交AE于G.根據(jù)菱形的性質(zhì)得出AB=2,AG=12AE=3【詳解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四邊形ABEF是平行四邊形,∵AB=BE,∴四邊形ABEF是菱形;(2)連結BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【點睛】本題考查了平行四邊形的性質(zhì)與菱形的判定與性質(zhì),解題的關鍵是熟練的掌握平行四邊形的性質(zhì)與菱形的判定與性質(zhì).22、(1)見解析;(2)2【解析】
(1)方法一:連接AC,利用角平分線判定定理,證明DA=DC即可;方法二:只要證明△AEB≌△AFD.可得AB=AD即可解決問題;(2)在Rt△ACF,根據(jù)AF=CF·tan∠ACF計算即可.【詳解】(1)證法一:連接AC,如圖.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四邊形ABCD是菱形.證法二:如圖,∵四邊形ABCD是平行四邊形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四邊形ABCD是菱形.(2)連接AC,如圖.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四邊形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF?tan∠ACF=2.【點睛】本題主要考查三角形的性質(zhì)及三角函數(shù)的相關知識,充分利用已知條件靈活運用各種方法求解可得到答案。23、(1),;(2)0<n<1或者n>1.【解析】
(1)利用待定系數(shù)法即可解決問題;(2)利用圖象法即可解決問題;【詳解】解:(1)∵A(1,1)在直線上,∴,∵A(1,1)在的圖象上,∴.(2)觀察圖象可知,滿足條件的n的值為:0<n<1或者n>1.【點睛】此題考查待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,解題關鍵在于利用數(shù)形結合的思想求解.24、(1)k=11;(1)C(2,0).【解析】試題分析:(1)首先求出點A的坐標為(1,6),把點A(1,6)代入y=即可求出k的值;
(1)求出點B的坐標為B(4,2),設直線BC的解析式為y=2x+b,把點B(4,2)代入求出b=-9,得出直線BC的解析式為y=2x-9,求出當y=0時,x=2即可.試題解析:(1)∵點A在直線y=2x上,其橫坐標為1.∴y=2×1=6,∴A(1,6),把點A(1,6)代入,得,解得:k=11;(1)由(1)得:,∵點B為此反比例函數(shù)圖象上一點,其縱坐標為2,∴,解得x=
4,∴B(4,2),∵CB∥OA,∴設直線BC的解析式為y=2x+b,把點B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直線BC的解析式為y=2x﹣9,當y=0時,2x﹣9=0,解得:x=2,∴C(2,0).25、(1),;(2)見解析;(3).【解析】
(1)連結AD、BD,利用m求出角的關系進而求出∠BCD、∠ACD的度數(shù);
(2)連結,由所給關系式結合直徑求出AP,OP,根據(jù)弦CD最短,求出∠BCD、∠ACD的度數(shù),即可求出m的值.
(3)連結AD、BD,先求出AD,BD,AP,BP的長度,利用△APC∽△DPB和△CPB∽△APD得出比例關系式,得出比例關系式結合勾股定理求出CP,PD,即可求出CD.【詳解】解:(1)如圖1,連結、.是的直徑,又,,(2)如圖2,連結.,,,則,解得要使最短,則于,,,故存在這樣的值,且;(3)如圖3,連結、.由(1)可得,,,,,,,,①,②同理,③,由①得,由③得,在中,,,由②,得,.【點睛】本題考查了相似三角形的判定與性質(zhì)和銳角三角函數(shù)關系和圓周角定理等知識,掌握圓周角定理以及垂徑定理是解題的關鍵.26、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】
(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025飯店轉包合同范文
- 2025年度養(yǎng)老機構寵物養(yǎng)護服務合同示范文本3篇
- 二零二五年度競業(yè)禁止勞動合同在文化產(chǎn)業(yè)的關鍵作用3篇
- 二零二五年度公租房合同簽訂及補貼發(fā)放協(xié)議3篇
- 二零二五年度學校食堂兼職校醫(yī)食品安全合同2篇
- 二零二五年度素食餐飲技術加盟經(jīng)營合同2篇
- 二零二五年度土方運輸車輛智能化改造與升級合同3篇
- 二零二五年度新能源電動汽車租賃合同2篇
- 2025年度年度租賃車輛保險責任協(xié)議3篇
- 2025年度極限運動賽事委托承辦授權協(xié)議3篇
- 裝飾裝修工程質(zhì)量保證措施和創(chuàng)優(yōu)計劃
- 內(nèi)鏡室院感知識培訓
- 吃動平衡知識講座
- 漏工序改善控制方案
- 數(shù)據(jù)維護方案
- 湖北省部分學校2023-2024學年高一上學期期末考試數(shù)學試題(解析版)
- 軟件測試人員述職報告
- 《內(nèi)經(jīng)選讀》期末考試參考題庫(含答案)
- 廣東省佛山市2023-2024學年高二上學期期末中教學質(zhì)量檢測英語試題【含答案解析】
- 器械相關感染預防課件
- 2024年度醫(yī)院影像科護理工作計劃
評論
0/150
提交評論