2023屆江蘇省蘇州第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第1頁
2023屆江蘇省蘇州第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第2頁
2023屆江蘇省蘇州第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第3頁
2023屆江蘇省蘇州第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第4頁
2023屆江蘇省蘇州第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.2.若為虛數(shù)單位,則復數(shù),則在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.4.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.55.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.66.在中,,,,若,則實數(shù)()A. B. C. D.7.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.8.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.9.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.410.已知等差數(shù)列的公差不為零,且,,構成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.1311.為比較甲、乙兩名高二學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差12.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數(shù)的絕對值越接近1;②在回歸分析中,可用相關指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關關系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數(shù)為()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值是______.14.已知雙曲線的左、右焦點分別為為雙曲線上任一點,且的最小值為,則該雙曲線的離心率是__________.15.已知不等式組所表示的平面區(qū)域為,則區(qū)域的外接圓的面積為______.16.已知實數(shù),滿足則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點處的切線方程;(2)若函數(shù)有兩個極值點,,且,求證:.18.(12分)若正數(shù)滿足,求的最小值.19.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項公式;(2)若,求數(shù)列的前n項和.20.(12分)求函數(shù)的最大值.21.(12分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數(shù),當時,討論零點的個數(shù).22.(10分)在中,內(nèi)角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.2、B【解析】

首先根據(jù)特殊角的三角函數(shù)值將復數(shù)化為,求出,再利用復數(shù)的幾何意義即可求解.【詳解】,,則在復平面內(nèi)對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數(shù)的幾何意義、共軛復數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎題.3、A【解析】

根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設,則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.4、C【解析】

利用復數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數(shù)代數(shù)形式的乘法運算,是基礎題.5、B【解析】

根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.6、D【解析】

將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.7、B【解析】

由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質的應用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎題.8、B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數(shù)取值范圍的求法,屬于基礎題.9、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。10、D【解析】

利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【詳解】由,,構成等差數(shù)列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎題.11、C【解析】

根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項.【詳解】根據(jù)雷達圖得到如下數(shù)據(jù):數(shù)學抽象邏輯推理數(shù)學建模直觀想象數(shù)學運算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點睛】本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應用意識.12、C【解析】

①根據(jù)線性相關性與r的關系進行判斷,

②根據(jù)相關指數(shù)的值的性質進行判斷,

③根據(jù)方差關系進行判斷,

④根據(jù)點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數(shù)r的絕對值越接近于1,故①正確;

②用相關指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;

③若統(tǒng)計數(shù)據(jù)的方差為1,則的方差為,故③正確;

④因為點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;

所以正確的命題有①③.

故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】

做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數(shù)過點時取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結合求線性目標函數(shù)的最值,屬于基礎題.14、【解析】

根據(jù)雙曲線方程,設及,將代入雙曲線方程并化簡可得,由題意的最小值為,結合平面向量數(shù)量積的坐標運算化簡,即可求得的值,進而求得離心率即可.【詳解】設點,,則,即,∵,,,當時,等號成立,∴,∴,∴.故答案為:.【點睛】本題考查了雙曲線與向量的綜合應用,由平面向量數(shù)量積的最值求離心率,屬于中檔題.15、【解析】

先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點睛】線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結合圖形確定目標函數(shù)最值取法、值域范圍.16、【解析】

根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應用,由數(shù)形結合法求線性目標函數(shù)的取值范圍,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導可得,結合函數(shù)的單調性可得,從而得證.試題解析:(1)由已知條件,,當時,,,當時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調遞增,不可能有兩根;2)若,令得,可知在上單調遞增,在上單調遞減,令解得,由有,由有,從而時函數(shù)有兩個極值點,當變化時,,的變化情況如下表單調遞減單調遞增單調遞減因為,所以,在區(qū)間上單調遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調遞增,在單調遞減,若有兩個根,則可得,當時,,所以在區(qū)間上單調遞增,所以.18、【解析】試題分析:由柯西不等式得,所以試題解析:因為均為正數(shù),且,所以.于是由均值不等式可知,當且僅當時,上式等號成立.從而.故的最小值為.此時.考點:柯西不等式19、(1),(2)【解析】

(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點睛】本題主要考查了等比數(shù)列的基本量求解以及錯位相減求和等.屬于中檔題.20、【解析】

試題分析:由柯西不等式得試題解析:因為,所以.等號當且僅當,即時成立.所以的最大值為.考點:柯西不等式求最值21、(1);(2)見解析.【解析】

(1)設切點坐標為,然后根據(jù)可解得實數(shù)的值;(2)令,,然后對實數(shù)進行分類討論,結合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數(shù)為增函數(shù);當時,,此時,函數(shù)為減函數(shù).,.①當,即當時,函數(shù)有一個零點;②當,即當時,函數(shù)有兩個零點;③當,即當時,函數(shù)有三個零點;④當,即當時,函數(shù)有兩個零點;⑤當,即當時,函數(shù)只有一個零點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論